CHAPTER
EIGHT

EVALUATING FAD EFFECTIVENESS
IN DEVELOPMENT PROJECTS: THEORY AND PRAXIS

Jeffrey C. Johnson and James D. Murray

INTRODUCTION

Fish aggregation devices (FADs) have been viewed by some as an impor-
tant technological innovation for increasing productivity among small-scale
artisanal fishermen in developing countries (Pollnac, this volume).! Development
agencies, such as AID and international commissions, such as the Indo-Pacific
Fishery Commission, have seen FADs as potentially useful for increasing
productivity in underdeveloped fisheries and as a tool for the management of
small-scale fisheries. In addition, FADs have been viewed as potentially useful in
increasing the safety of small-scale fishers by reducing the distances traveled
offshore and range of search for less seaworthy indigenous watercraft. One
concern of these agencies and commissions has been evaluating the effectiveness
and efficiency of FADs in a given context, particularly for lesser developed
countries.

Evaluation of FAD projects is not a simple matter of increased harvesting
efficiency. FADs have been recognized as potentially problematic, since aggrega-
tion itself adds nothing to the productivity of an ecosystem nor does it increase the
carrying capacity of any given system. Thus, depending on a number of biological,
economic, social, and technological factors, FADs may actually prove to be more
detrimental than helpful in the long run. Increasing the ability to harvest at ever
increasing efficiency, without increasing productivity, will ultimately lead to
non-sustainable yields. Samples and Spraul (1985), for example, do not portray
the use of FADs in commercial fisheries in a good light in terms of increasing
sustainable yields, increased profits in the long run, and expanding demand for
labor under open access. They suggest control of harvest levels and fishing effort
as a potential solution to these problems.

The question of sustainability aside, there is still a question as to the extent
to which FADs increase efficiency in harvests under various economic, social,
biological, and technological conditions. In developing countries, and particularly
with respect to artisanal fisheries, FADs may provide a cost effective, simple
solution to increasing harvests where there are sufficient harvestable populations.
As a technology for improving efficiency in the harvest of marine species, FADs
are no more problematic than any other technological means for improving
efficiency such as the introduction of or improvements in net technology, fish
finders, etc. Thus, FADs should be evaluated no differently than any other
technological improvement, particularly in terms of their use in developing
fisheries. With this in mind, this paper examines different concerns in evaluating
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the effectiveness of FADs under a variety of conditions. The first portion of the
paper focuses on issues of research design, taking into account the practical
aspects of design in developing fisheries. This is followed by a discussion of
problems inherent in the statistical analysis of data typically collected in the course
of evaluating FAD effectiveness.

EXPERIMENTAL DESIGN

In evaluating the use of FADs there is the simple question of "How
effective are FADs?" But this question is a relative one and can only be answered
in terms of relative effectiveness (i.e., as compared to alternatives). Depending
on the particular context of the projects, this problem presents itself as a classic
experimental design issue in terms of treatments and controls. By using different
types of FADs, different in relation to both themselves and, possibly, some
control (traditional fishing practices without FADsj) and keeping fishing methods
either constant or varying them by site or some other condition (e.g., depth), one
can examine factors affecting variations in catch. Ultimately, there is an interest
in statistically assessing differences among both treatments and controls and coming
up with estimates of catch per unit effort (or any other estimate of interest). The
former allows for assessments of relative effectiveness while the latter will help
in assessing sustainability of these fishing practices under different bioeconomic
or sociological conditions.

There are a variety of references on experimental design that are certainly
appropriate for the problem at hand. Optimally, a project might best be evaluated
using some randomized balanced block design which in turn requires relatively
more sophisticated parametric analytical tests. Practically, however, the human
component, particularly in developing fisheries, will limit the complexity of
experimental design and the nature of catch data will call into question the use of
standard parametric statistical tests. In actual field experiments, random is not
always random and attempts to control for extraneous or confounding influences
are not all that controllable. It is not highly trained technicians collecting samples,
but usually local fishers who are a part of a fishing culture with norms and
relations that ultimately will affect both the nature of design and the validity of
both the data and the statisticai analysis.

Research Design: Simple Example In this section we provide a brief
example of a simple design for evaluating the effectiveness of FADs in a fixed
structure recreational fishing context in Wrightsville Beach which is located near
Wilmington, North Carolina (Figure 1). Although this is an example drawn from
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the United States, the pure and practical design issues encountered here will
illustrate the actual problems of evaluation stemming from the human component.

\

NORTH CAROLINA

“WRIGHTSVILLE BEACH

Figure 1. Location of Wrightsville Beach in the Southeastern United
States.

The example comes from Murray et al. (1987) on a comparison of two piers, one
using a FAD, the other not. Johnson served as a consultant on this project in terms
of the overall research design. The objective was a simple one: to determine the
effectiveness of FADs for fixed structure recreational fishing. Early design
considerations were also influenced by the number, kind, and configuration of
the FADs to be used. In this case, a single configuration of a specific kind
(McCintosh) was to be explored. A single pier could suffice in an alternating
placement and removal of the FAD units. However, there was always a chance
that statistically significant differences in catches between periods could be a
function of weather, water temperature, or a variety of ethological or ethnological
factors. Thus, two piers that share a high degree of similarity were preferable.

Ultimately two piers were selected that were within proximity to one
another (but not so close so as to worry about spatial autocorrelation) and had
similar characteristics in terms of length, surrounding water depth, fishing
restrictions, water temperature, seasonality, and sand substructure. But the
concern for similarity in characteristics did not guarantee any "natural” difference
between the two piers. The question then was, "Were there any differences in
catch per unit effort between the two structures?”

In pursuit of this question, the basis for the experimental procedure was
developed in which piers were to be sampled simultaneously three days per week,
three hours per day with hours chosen on a random basis each day of the 5-
to-6-week sampling period. In addition, the pier was divided into three sections

145



Jeffrey C. Johnson & James D. Murray

of 76 meters each--nearshore, middle, and end. Pre-experimental assessment of
any differences in piers was conducted for any indication of possible differences
in CPUE that might be a function of existing differences between the piers. This
was done 10 weeks prior to the start of the study.

After pre-experimental assessment, piers were sampled as described above
in an alternating treatment/control sequence with sampling periods of 5-6 weeks
in duration. Sampling days and hours were chosen randomly with days being
divided into three six-hour periods containing each of six one-hour segments.
Segments within periods were also chosen at random. Data collected included
conditions (e.g., windspeed, water temperature, etc.), wet gear time, species
caught, amount and type of gear used, and weight and length of fish caught. In
addition, a similar design was used in the direct observation of FADs while in
place (i.e., observation of control and treatment sites by divers).

This is a simple example of an attempt to control for extraneous variables
in assessing the effectiveness of FADs. Concern for similarity of pier characteris-
tics, the characteristics of the surrounding ocean environment, and the sampling
design itself were all carefully considered so that any observed differences between
the FAD and non-FAD sites could be attributed exclusively to our hypothesized
effect (i.e., FAD pier will have higher catch rates), at least theoretically. Of
course, even under the best of experimental conditions, we still must be cautious
in assigning true cause and effect. Nevertheless, under the scenario described we
have applied reasonable common sense in attempting to control for any confound-
ing variables.

Experimental design will naturally be determined by the problem at hand.
For example, Rountree (1989) designed a study that was interested in understand-
ing the effect of FAD structure size on extent of aggregation for what he calls his
protection hypothesis. He used a randomized block design in order to control for
both location effects and temporal effects (e.g., tidal effects, various behavioral
effects). Cayre et al. (1991) reports on a study that, unlike Rountree's observa-
tional approach, actually attempts to determine the effectiveness of FADs in a more
real world setting involving an artisanal fishery in the Comoros Islands. In this
study there were open sea conditions with no FADs (control; and fishing near
FADs (treatment). In addition, motorized vessels with troll lines and artificial
lures and non-motorized canoes with handlines and natural bait were compared
under control and treatment conditions. Data were collected by technicians at each
of 17 artisanal fishing landing sites.

Despite careful concern for specific design elements, it is often the case that
humans will inevitably complicate, and sometimes compromise, our ability to test
the hypothesized effects of interest. In the Murray et al. (1987) study, for
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example, pier owners, concemned over the possible interference of FAD units with
normal fishing (i.e., getting lines tangled), requested the units be placed no closer
than 229 meters from the pier. Referring to this as "unnecessarily restrictive,"
Murray et al. (ibid:145) recognized this distance as having a potential impact on
the results of the study. In developing countries, FAD placement may be subject
to not just environmental concerns (e.g., depth, water temperature), but social ones
as well, such as fishing territoriality, share systems, and so on (Pollnac 1988).
Thus, design issues must consider both natural and human factors as potential
confounding variables and in the possible presence of any possible measurement
error.

Another important consideration in the overall design of the research
involves the types of statistical analysis to be used. Complicated block designs, for
example, often require complex parametric analyses, which in turn require that
certain assumptions be met (e.g., normality, random) for testing hypotheses. The
next section discusses potential analytical problems as they relate to the type of
fisheries data normally found in assessing differences between treatment and
controls based in terms of catch per unit effort (CPUE).

Potential Analytical Pitfalls Ultimately any elevation will be determined
by some standard in order to determine what constitutes a "true" difference
between alternatives. The gold standard used by most is the idea of statistical
significance. A detailed discussion of significance is beyond the scope of this
paper, but as we shall see, means for meeting the assumptions of both commonly
used test statistics (e.g., t-test) and means for assessing significance (e.g.,
probability distribution) must always be called into question, particularly with
regard to the types of data routinely collected in evaluating FADs. Instead of
wading through a terse discussion of assumptions surrounding different statistical
approaches, in this section and the sections to follow we will explore the problems
inherent in FAD evaluation data and provide an example an discussion of potential
analytical pitfalls.

First, data used to evaluate FAD effectiveness is almost universally messy.
That is to say, catch or observational data typically found in FAD evaluation
research is often highly skewed, heavily tied, sometimes sparse, particularly on a
species-by-species basis, many involve small sample sizes, comparison groups
(samples) of different sizes, and may not truly constitute a random sample. Two
exampies of the kind of data typically found in research of this kind can be found
in Table 1. In both cases (one an example of catch per unit effort data, the other
representative of observational data collected by divers) standard deviations are
approximately two to three times that of the mean, reflecting highly skewed data.
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Much of this
skewness is due to
zero catch rates or no
observations leading
to a large number of
ties at one end of the
distribution. The
presence of these
ties, particularly at
the zero end, have

Table 1. Means and standard deviations for catch
data from studies evaluating FAD effectiveness: catch

or observation data for treatments by species.
“

Species Mean SD

Murray et al. (1987) Pomaromus saltatrix .006 .016

Rountree (1989) Decoprdrus punctarus 171 325

%

implications for choosing appropriate methods for both

transforming or reexpressing the raw data and the eventual selection of proper
analytical techniques that minimize any potential violations in assumptions.

In order to understand the nature
of these pitfalls and any potential solu-
tions, we analyze a portion of data from

Table 2. Means and standard
deviations for CPUE for species
combined for both piers.

the overall study by Murray et al. (1987).

Two sampling periods from the month of Mean SD
Sepiember were selected on the basis of Pomatomus saliarix 0.325  0.802
the presence of relatively large numbers Leiostomus xanthurus  0.187  0.651

. A . Trachinorus spp. 0.065 0.375
of observations for each of the piers in Scomberomous macularus 0.104 0.718
the study. For this period, pier 1 is the L R ——

treatment (i.e., FAD pier), while pier 2
is the control. Data to be compared is catch per unit effort data defined as the

catch per minute per unit
of gear (i.e., rod). Total

number of observations for

pier 1 are 21 and for pier
2, 44, providing a good
example of data containing
samples of unequal size.
This will provide a simple
example of a situation in-
volving typical data based
on a relatively modest sam-
ple size,

Means and standard
deviation by species are
provided in Table 2. As
can be seen, the data are
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Figure 2. Density plot of CPUE for Pomatomus

saltatrix.
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highly skewed. Figure 2 is a density plot for CPUE for Pomatomus saltatrix for
both piers, including a normal smoothing. Again, it is readily apparent that the
data are highly skewed and heavily tied. The question is: What kinds of problems
do data of this form present in terms of appropriate selection of analysis and
assessment of statistical significance.

Statistical Tests and Probability Distributions One's initial reaction may
be to rely on a test statistic familiar to all introductory statistics students, the
t-test. After all, the test is familiar to most, used by many, and gets at what we
want, namely whether there are any differences between the mean catch rates of
pier 1 and pier 2. We are really interested in whether the FAD pier is catching
better than the non-FAD pier.

Although we "secretly” seek to prove that the FAD pier catches better than
the non-FAD pier, in a statistical test we actually test the null hypothesis (H,) that
there is no difference between the mean catch rate of pier 1 and pier 2 (Hy: 1, -
H,=0). The t-test provides us with a single value that helps in assessing departure
from the null hypothesis, the t-value. But this single value alone is not sufficient
to tell us whether the null hypothesis can be rejected. We need some probability
distribution for the test statistic under the assumption that the null hypothesis is
true. In parametric statistics such probability distributions are derived by putting
conditions or structure on the null hypothesis that makes it theoretically possible
to calculate a distribution. But in order to use these distributions in evaluating the
null hypothesis, we are required to make rather restrictive assumptions about our
sample data and the population from which it was drawn. In parametric ap-
proaches these assumptions typically require us to consider whether our data are
from a random sample from a population that has particular characteristics (e.g.,
variables are independently and normally distributed with constant means and
variance). Thus, theoretically at least, a test of the null hypothesis is valid if and
only if these conditions are met. Now the question becomes: Given the types of
data we find in the course of evaluating FAD projects, do we generally meet these
rather restrictive assumptions?

The answer to this question is typically "no." Putting aside for a moment
the condition of independence, we may often call into question the conditions of
randomness or normality, let alone other special conditions (e.g., regarding means
and variance). However, in all fairness to parametric tests, such as the t-test,
there is evidence (primarily from extensive simulation research) that the sample
data need only be of sufficiently large size and approximately normal in tests to
be valid. In addition, there are ways for dealing with other problems as, for
example, unequal variances (e.g., independent samples, separate variance t-test).
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We will return to the issue of ran-

domness shortly. For now, let us :: i M [“
return to a discussion of the data £ o6 - «
found inTable 2. £ os
As pointed out, the data in goed L 30 §

this table are highly skewed, pos- [E o3 - - 20
sibly not lending themselves very § 02 -
easily to parametric tests. There 01 [0
are transformations of the raw o oo o
data that will sometimes improve oPue
upon normality problems within

Figure 3. Density plot of the raw data

the samples and include log and
rank reexpressions. However,
data are sometimes so skewed or
messy that transformations are largely unsatisfactory. Figures 3 and 4 show the
raw and transformed density plots for the CPUE for all species combined for both
piers. Although there is some improvement in normality as we move from Figure
3 to Figure 4, the reexpression of the raw data is still far from normal or approxi-
mate normal.

A test statistic that has no distributional assumptions and is related to the
t-test is the non-parametric
Wilcoxon rank sum test. 06 -
This test compares the sum
of the ranks between the 05 - ]
two samples and is there- ) - 30
fore less affected by distri-
butional factors such as
outliers or skewness. Al-
though tied ranks can affect
the outcome, there are
means for correcting for
ties, but except for under / - 10
any but the most extreme 01 4
conditions the correction
alters the outcome little. } + . y T
As we shall see, this is an 0 v 2 3 4
excellent test for the analy- _ChE
sis of the kind of data we Figure 4. Density plot of log transformed data
are interested in here, but for total CPUE.

for total CPUE.
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is limited to test of the difference between two samples. In addition, traditional
means for assessing significance (e.g., asymptotic p-values) may be problematic
under certain conditions (e.g., small sample sizes).

Any potential problems in assessing significance even for nonparametric
tests can be eliminated through the use of exact permutational or randomization
procedures. The probability distribution to be used is specifically related to the
problem at hand; it is not theoretical but empirical. Thus, instead of relying on a
theoretical distribution requiring restrictive assumptions we can utilize exact
permutational, Monte Carlo estimates of exact permutations, or randomized
distributions that require little in the way of assumptions. Similar to theoretical
probability distributions, the probability distribution for exact or randomized tests
represent the distribution for the test statistic under the assumption the null
hypothesis is true. However, because these distributions are empirically based,
generated with the use of computer intensive methods, assumptions about the
nature of the population or the sample are unnecessary.

The ability to empirically generate probability distributions for the problem
at hand allows us to move beyond the rather limited number of traditional test
statistics (and their corresponding theoretical distributions) and develop test
statistics that are more relevant to a specific research problem. Randomization
tests more generally are computer intensive methods for testing hypothesis that are
essentially assumption-free. The general principal involves the calculation of the
observed test statistics from the sample data. The empirical probability distribution
is generated by randomizing or shuffling the sample data within categories,
experimental groups, treatments/controls, etc. Following each shuffle, the test
statistic is calculated and this is repeated for an adequate number of times
{e.g.,1,000), resulting in a distribution of randomized test statistics. The observed
test statistic is compared to the distribution of empirically derived test statistics
under the assumption the null hypothesis is true. If the observed value is extreme
in relation to the empirical values, thien the null will be rejected (see Noreen 1989
for a good review).

In the following section we provide three examples of the analysis of data
from a FAD evaluation project described earlier. Each provides an example of the
typs of statistical tests discussed above. The first example uses a conventional
parametric test, the second an exact parametric test, and the third a randomization
test of our own design.

Analytical Example Murray et al. (1987) used a parametric t-test in this
anulysis of CPUE data between control and treatment piers. Frusher (1986)
employeid a conventional t-test to test differences in the size of fish caught at FAD
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L4

and non-FAD sites. Rountree (1989) used two- and three-way ANOVA models
in comparing FADs of different size. Cayre et al. (1991) employed the Wilcoxon
rank sum test using conventional asymptotic p-values, a nonparametric analogue
to the t-test, in testing for differences in FAD and non-FAD sites. In this section,

we will compare the results of three different ap
Particular attention will be focused on

subset of data from Murray et al . (1987).

the structure of the null hypotheses in relation to the

proaches to the analysis of the

theoretical or empirical

probability distribution, related assumptions, and interpretations and comparisons

of resulting p-values.

Table 3 shows the output of a t-test anal-
ysis using the statistical package SYSTAT
(Wilkinson 1990). Because of the sparseness of
data for individual species, we will look at dif-
ferences in catch per unit effort for all species
combined (total CPUE). As mentioned earlier,
skewed data of this kind is typically reexpressed
in order to address problems of normality. In
this case, analysis of the raw and log trans-
formed data will be compared. Figures 3 and 4
show the raw and log transformed density plots
respectively. As is evident, even the log trans-
formed data is highly skewed.>

We are interested in testing the mean
difference between the treatment and control
piers with expectations that the treatment pier
will have a higher CPUE than will the control
pier. However, we actually test the null hypothe-
sis as follows:

Ho:“l‘p2=0

The null hypothesis is simply that there is no

Table 3. SYSTAT results of
t-tests for raw and log-
transformed data.

Independent samples t-test on log

of total CPUE grouped by pier
Pier N Mean SD
1 21 0.303 0.945
2 44 -0.065 0.894

Separate variances t = 1.493
DF = 375 P =0.144 (.072)
Pooled variances t = 1.523

DF = 63.0 P = 0.133 (.067)

Independent samples t-test on total
CPUE grouped by pier

Pier N Mean SD
1 21 0.016 0.020
2 44 0.010 0.017

Separate variances t = 1,133
DF = 33.7 P = 0.265 (.132)
Pooled variances t = 1,209
DF = 63.0 P =0.231(.110)

L

difference between the piers. In this case, we are interested in a one-tailed test of

the following type:

H:p-p,>0

The alternative hypothesis reflects our expectations that the treatment pier will
have a higher CPUE than the control pier. Because this is a parametric approach,
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the test is only valid if the two groups are from random samples from the same
normal population. Depending on whether this is a pooled or separate variance
t-test, we must also be concerned about whether the two samplies have equal
variance.

The results in Table 3 show that in either the raw or log transformed case
the null hypothesis cannot be rejected at the “gold standard” 0.05 level. The
reported probabilities are two-tailed and should be divided by 2 (a/2). One-tailed
probabilities are reported in parentheses. It should be pointed out that the real
probabilities should be reported independent of whether they meet or exceed a
threshold significance value or not (e.g., 0.05). There can be vast differences
between analyses where probabilities miss by a mile or barely make it under the
wire (Noreen 1989).

We next examine an analysis of the data using a nonparametric test with
both a p-value estimate on the basis of a theoretical distribution (asymptotic
p-value) and one based on an exact estimate of the p-value. The Wilcoxon rank
sum test, described earlier, is a test statistic based on a comparison of the ranked
sums between two samples. The null hypothesis is stated as follows:

Hy: the distribution of differences is symmetrical around 0

This null hypothesis is similar to that for the parametric t-test in that it assumes
no differences between
control and treatment.

The alternative hypoth- Table 4. Output from STATXACT for Wilcoxon

esis could be stated as
follows:

H,: differences will be
larger than 0

That is to say one distri-
bution is stochastically
larger than the other.
This is again a one-
tailed probability prob-
lem.

Results of an
analysis of the data us-
ing the computer pack-

rank sum test showing the asymptotic and exact
estimate for p.

Summary of exact distribution of Wilcoxon rank sum statistic:

Min, Max. Mean Stdev. Observed Standardized
378.0 1,154 693 65.48 800 1.634

Mann-Whitney Statistic = 569.0

Asymptotic Inference:
One-sided p-value: Pr {Test Statistic .GE. Observed}
Two-sided p-value: 2 * one-sided

0511
1022

Monte Carlo p-value estimates at 99.00% level of confidence:

1-sided: Pr { Test Statistic .GE. Observed } = .0540 q .0130

2-sided: Pr {| Test Statistic - Mean| .GE. |Observed - Mean|}
= .1105 q .0180

%
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age for exact nonparametric inference called STATXACT (Mehta and Pate] 1991)
as well as the results from the Wilcoxon rank sum test are presented in Table 4.
In this case both the asymptotic p-values and the Monte Carlo estimate of p meets
the “gold” standard for rejection of the null hypothesis that the two distributions
are stochastically the same. However, the Monte Carlo estimate of p and the 99
percent confidence interval yields the most potentially valid estimate even when
sample sizes are small and the data messy (i.e., tied, sparse, skewed; see Mehta
and Patel 1991),

Finally we present an analysis of the data using a simple randomization test
based on differences in means between the control and treatment groups. As
described above, means are subtracted representing the observed difference
between pier 1 and pier 2. The data is then randomized within categories (piers)
and a difference in means is calculated. This is repeated for a large number of
tests (e.g., 2,000), creating a distribution of mean differences under the null
hypothesis. The null hypothesis in this case is:

}{0: )(l = )(2 ==O

Once again, since we are interested in whether the FAD pier is catching better than
the non-FAD pier, the alternative hypothesis is:

H:X,-X,>0

Noreen (1989)
provides code in sev-
eral different program-
ming languages for
carrying out this and
other related hypothe-
sis tests. Here we use
a randomization statis-
tical program called
RESAMPLING  STATS
(Simon 1991). The
program uses a simple
programming language
for customizing your
own randomization or  Figure S, Output from RESAMPLING STATS.
bootstrap tests. Our
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test is based on a comparison of the observed difference in means to a distribution
of 2,000 randomized differences. Figure 5 is output from RESAMPLING STATS for
a histogram of the empirical differences in means. The observed difference is
0.01096 and lies to the far right in the empirical distribution. The area to the right
of the observed difference is 0.067 (the one-tailed probability). Although this does
not meet the 0.05 rejection criterion, the observed difference in means is still a
relatively rare event and yields results similar to those of the t-test for the log
transformed data. Like the previous example, this hypothesis test requires no
assumptions about the sample, the population from which it was drawn, or, for that
matter, whether it was even a random sample. We care only if the catch rates of
the two piers are different and no inference is made concerning any population.

Table 5. Comparison of statistical tests and assumptions.

TEST ASSUMPTIONS COMMENTS
Parametric t-test

independent samples

equal variance (pooled variance)

two samples are independent,
random samples from a normal
population, two population
variances are equal

sizes of samples should
be approximately
equal; sample
sufficiently large and
approximately normal;
Outliers should be dealt
with.

Parametric t-test
independent samples
unequal variance (separate
variance)

Wilcoxon rank sum test
using exact or Monte Carlo
estimate of exact probability

Randomization of test for
differences in means

two samples are independent,
random samples from normal
population

two samples are independent
(random)

independence

sample sufficiently large
and approximately
normal; outliers should
be dealth with.

exact nature of sample
data less problematic

need for random sample
relaxed but
independence is still
important

S - S

The assumptions surrounding the probability distribution for each of the
hypothesis tests discussed in this section are summarized in Table 5. In all cases,
the independence of observation is still required for the analysis to be valid
(Edgington 1987). However, as we move down through the various tests, the
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number of required assumptions to ensure validity of the p-values declines
dramatically. Also, we observed differences in the magnitudes of the p-values
between the different approaches. The Wilcoxon rank sum test using an exact
estimate of p yielded statistically significant and valid results as compared to
conventional parametric tests.

SUMMARY

Careful consideration of both research design and analytical issues will help
to ensure valid assessment of the effectiveness of a given FAD project. An
important concern analytically is the degree to which the data collected meet the
assumptions of probability distributions used for testing the null hypothesis. Given
the rather messy dafa generally found in studies on FADs, and considering the
sample data may not be from a random sample, randomization and exact tests
provide an assumption-free alternative to traditional statistical approaches.

As we have seen from the examples, there is currently software available
for personal computers to carry out analysis of this type. In addition, Edgington
(1987) and Noreen (1989) provide discussions of the use of randomization tests for
more complex research designs such as randomized block designs with repeated
measures. Given the potentjal problems associated with evaluating the effec-
tiveness of FAD projects in a development context, researchers need the latest tools
at their disposal in order to make the most valid assessments possible.

Finally, the design of experiments for evaluating FAD effectiveness needs
to be aware of sociological factors that may impact valid assessment. This is of
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NOTES

1. This work was funded in part from Sea Grant development
funds. We would like to thank Richard Pollnac for his recognition
and concemn for design and analytical issues of the type reviewed in
this paper. Thanks also to Patricia for providing some extra work
space and motivation.

2. A constant of .5 was added to the raw data in order to perform
a log transformation.
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