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CHAPTER ONE

Introduction

The next few years are likely to be
an exciting period for those involved
in testing hypotheses. Recent
dramatic decreases in the costs of
computing now make revolutionary
methods for testing hypotheses avail-
able to anyone with access to a
personal computer. These methods
are easy to understand, very general,
and can often avoid troublesome
assumptions that are required with
conventional methods.




2 Chapter 1 Introduction

1.1 ASSESSING SIGNIFICANCE IN A HYPOTHESIS TEST

Three ingredients are usually required for a hypothesis test: a hypothesis, a
test statistic, and some means of generating the probability distribution of the
test statistic under the assumption that the hypothesis is true. The first ingre-
dient, the hypothesis, should be suggested by substantive theory. For example,
economists would predict that, all other things being equal, an increase in the
supply of corn should lead to a decrease in the price of com. Because of the
logic of inference, the hypothesis is ordinarily stated negatively in the form of a
null hypothesis which the researcher would like to reject. To take the above
example, the null hypothesis might be that there is no relationship between the
supply and the price of corn. The alternative hypothesis is that the price of corn
is negatively related to its supply.

A test statistic is the second ingredient required for a hypothesis test. A test
statistic can be any single-valued function of the data. For example, the average
value of a variable across all cases is a single-valued function of the data. There
are many possible test statistics in any given situation. Often test statistics are
selected because they are familiar or because the distribution of the test statistic
is known for a sufficiently structured null hypothesis. ! However, a test statistic
should be chosen because its value is most sensitive to the veracity of the sub-
stantive theory being tested. In other words, a test statistic should have the char-
acteristic that the larger the value of the test statistic, the stronger the evidence of
departure from the null hypothesis in the direction indicated by the substantive
theory.? For example, economic theory suggests that as the supply of corn
increases, its price should fall; that is, supply and price should be negatively
correlated. A natural test statistic would be the negative of the correlation
between the two variables. If the relationship between the price and supply of
corn is perfect, the correlation will be -1 and the value of the test statistic will be
+1. In cases where the relationship is strong but not perfect, the value of the test
statistic will be positive, but less than +1.

The third ingredient required for a hypothesis test is some means of generat-
ing the probability distribution of the test statistic under the assumption that the
null hypothesis is true. In conventional statistics, this is ordinarily accomplished
by adding structure to the null hypothesis in such a way that it is possible to ana-
Iytically derive the probability distribution. For the example of research involv-
ing the relationship between the price and the supply of corn, the simple null

I The distribution of a test statistic can be “known” in the following sense: if a null
hypothesis is sufficiently structured, it may be possible to analytically derive the samp-
ling distribution of the test statistic. For example, if the null hypothesis is that observa-
tions are randomly selected from a Normal population with zero mean and an unknown
variance, then the sampling distribution of the standardized sample mean is the Student's t
distribution.

21n this book the test statistic is always transformed so that a larger value is evidence of
closer agreement with substantive theory.
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hypothesis of interest is that the price of corn does not depend on the supply of
com. However, when the t test is used to assess the significance of the correla-
tion, the null hypothesis is implicitly much more structured and complex than
the researcher would like. Under the assumptions that the price of corn and the
supply of corn are independently and Normally distributed random variables
with constant means and variances, the probability distribution of the sample
correlation can be analytically derived. Without this assumption (or some other
restrictive assumption), the probability distribution of the correlation cannot be
derived.

Note that the conventional t test is thus a test of the joint hypothesis that the
two variables are independently and Normally distributed. The only part of this
joint hypothesis that the researcher really cares about is that the variables are
independent; the condition that the variables are Normally distributed with
constant means and constant variances is added simply to allow the statistician
to compute the probability distribution of the test statistic. As a consequence,
however, if the null hypothesis is rejected, it may have been because the price of
corn is related to the supply of com or it may have been because the price of
corn or the supply of corn is not Normally distributed.

Why invoke the Normality assumption when it is not necessary? Using
computer-intensive methods, the simple hypothesis that the price and supply of
corn are unrelated can be directly tested without having to add extraneous, but
analytically convenient, conditions to the null hypothesis.

The process of assessing the significance of a test statistic is illustrated in
Figure 1.1,

f(1(x))
* Distribution of the test statistic
/ under the null hypothesis

Pg = prob(t(x)2t(xp))

t(xg)
Value of the test statistic for the observed data

Figure 1.1 Testing the null hypothesis
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In Figure 1.1, t(x,) is the value of the test statistic for the observed data Xy
The probability density function of the test statistic under the null hypothesis is
f(t(x)). This probability density function can be estimated using computer-
intensive methods, or it may be possible to analytically derive f(t(x)) if addi-
tional conditions are imposed in the null hypothesis. The probability, assuming
that the null hypothesis is true, that the test statistic would have been as large or
larger than t(x) is the area to the right of t(x,) under the probability density
function f(t(x)). This area is denoted by p, = prob(t(x) 2 t(x,)). If this area is
small, then given the value of the test statistic actually observed, it is unlikely
that the null hypothesis is true.

It is good practice for researchers to report this exact significance level py,.
However, in many fields it is common to report only the value of the test statistic
and whether or not the test statistic is significant at a conventional rejection level
such as 0.05 or 0.10. The significance level of the test — that is, the exact value
of p, for the test — is more informative. Kempthorne and Doerfler {1969, p. 239]
argue:

It is obvious that in choosing a fixed level, such as the
conventional 5%, merely reporting that the significance level is less
than or equal to 5% is a condensation of the data which results in loss
of information, however that may be defined. Our attitude to a

situation in which the significance level is 0.024 should be different
from one in which the significance level is 0.045, for instance.

Or, perhaps more importantly, our attitude to a situation in which the attained
significance level is 0.16 should be different from one in which the significance
level is 0.96. Further, Edgington [1970, p. 110] argues that “there is not neces-
sarily any particular p, value that would cause [the researcher] to switch to a
definite disbelief, and so the accept-reject dichotomy is inappropriate.”
Nevertheless, it is common practice to say that the null hypothesis is
rejected if the attained significance of the test p, is less than a conventional
rejection level such as 0.05 or 0.10.3 A careful researcher would say in such a
case that the evidence is consistent with the theory. If the probability p, is
greater than the prespecified rejection level for the test, then the null hypothesis
is not rejected. Suppose, for example, that p, is 0.42. The implication is that if
the null hypothesis is true, the test statistic would be as large as it was 42% of
the time. Thus, the probability that a value as large as the actual value of the test
statistic would have been observed, even though the null hypothesis is true, is
too large to be able to reject the null hypothesis. Narrowly, the sole function of
the computer-intensive methods discussed in this book (and, for that matter, of

3 Pearson [1937] traces the notion of a prespecified rejection level to agricultural
research, where rejection of the null hypothesis often would lead to costly repetition of
the experiment. A preset rejection level permitted precise control of the frequency with
which costly repetitions would be undertaken when the null hypothesis is in fact true.
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conventional methods) is to estimate the probability p,,.

There is an ecclesiastical analogy to the process of testing a hypothesis.
When an individual is proposed for beatification (the first step toward
canonization as a saint) in the Roman Catholic Church, two officials of the
Congregation of Rites in Rome are appointed to the case. One official, the
“advocate of the cause,” is charged with preparing a brief in favor of beati-
fication that deals with the life of, and miracles attributed to, the candidate for
beatification. The other, the “promoter of the faith” (popularly known as “the
devil's advocate™), is responsible for preparing a brief against the cause. In
particular, miracles attributed to the candidate are carefully scrutinized to deter-
mine if they could have some natural cause.

In research, the “cause” is the theory and the researcher ideally combines the
functions of both advocate of the cause and devil's advocate. A carefully con-
structed research design marshals evidence in favor of the theory while control-
ling for the possibility that the evidence is explained by other causes. It is cus-
tomary to pay particular attention to the possibility that evidence that appears to
support the theory does so only by chance. A random sample may not be repre-
sentative of the population from which it is drawn; two unrelated variables may
just happen to be aligned in a way that makes them appear related. A signifi-
cance test provides the likelihood that the evidence would support the theory by
chance alone and therefore serves one of the functions of the devil's advocate.

1.2 WHICH COMPUTER-INTENSIVE METHOD SHOULD BE USED?

Depending on the nature of the hypothesis, a significance test provides
information about one of two types of random influences. The first type of
hypothesis is concerned with a characteristic of the population from which a
random sample is drawn.* The second type of hypothesis is concerned with
the relationship among the variables, and in this type of hypothesis test the
observations may or may not be a random sample from a population.’ Fre-
quently, the research question is whether one set of variables is related to
another set of variables in a predictable way. For example, theory might suggest
that large values of one variable are expected to lead to large values of another
variable. A large number of cases in which this relationship is observed would
provide evidence consistent with the theory. The concern in such a test is that
the larger values of the two variables may be aligned by chance. When testing
the relationship between two variables, the alignment of variables relative to
each other across cases is the presumed source of random variation.

4 Conventional parametric statistical tests are concerned with testing this type of
hypothesis.

5 Conventional nonparametric tests are concerned with testing this type of hypothesis.
While a very subtle point, the observed relationship among the variables could be inter
preted as a random sample of size one from the population of all possible relationships.
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Computer-intensive methods can be used to assess the significance of a test
statistic under either type of hypothesis. Two generic computer-intensive
methods are considered in this book: Monte Carlo sampling and approximate
randomization tests. Monte Carlo sampling is used to test a hypothesis concern-
ing the population from which a random sample is drawn. Randomization is
used when the hypothesis is concerned with the relationship among variables.

To illustrate the first type of hypothesis, suppose a senatorial candidate
commissions an opinion poll in which 54% of a small random sample of regis-
tered voters report that they intend to vote for him. If the sample size is small
relative to the number of potential voters, the fact that 54% of the sampled
voters favor the candidate is not in itself of much interest. The election will be
decided by all voters, not just the voters in the sample. The candidate is inter-
ested in the sample only insofar as it is informative about voters in general — not
just the sampled voters. But a majority of a given random sample of the voters
may favor the candidate even if most voters do not. The Monte Carlo sampling
method may be used in such a situation to assess the likelihood that the appar-
ently favorable survey result is due to chance.

To illustrate the second type of hypothesis, suppose a self-proclaimed
connoisseur of gin claims to be able to distinguish from among eight brands of
domestic and imported gins in a blind tasting.® And suppose that the connois-
seur does, in fact, successfully identify six out of eight brands. He may, of
course, have simply been lucky. The randomization method can be used to
assess the likelihood that luck, rather than skill, accounts for the gin drinker's
apparent success.

1.3 IMPLICATIONS FOR SELECTION OF A TEST STATISTIC

To reiterate, the computer-intensive methods described in this book can be
used to assess the significance of virtually any test statistic under the most
minimal assumptions. That is, once a test statistic has been selected and its
value computed for the observed data, the methods discussed in this book can be
used to assess how unusual that value of the test statistic is under an appropriate
null hypothesis. Monte Carlo sampling can be used when the hypothesis
concerns a parameter of the population from which a random sample has been
drawn. A randomization test can be used when the null hypothesis is that one
variable is unrelated to another — whether or not the observations constitute a
random sample.’

6 CONSUMER REPORTS [July 1967 ,p. 381] reports that “despite abundant advertis-
ing of the superiorities of imported gins, our experts were baffled when it came to pinning
down the origin of a particular sample. They also had difficulty in making marked flavor
and aroma distinctions between the brands.” Copyright 1967 by Consumers Union of
United States, Inc., Mount Vernon, NY 10553. Excerpted by permission.

7 As Kempthorne {1966, pp. 14-15] points out, randomization tests also do not require
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The ability to assess the significance of virtually any well-defined test
statistic is liberating. Test statistics can be selected based on which test statistic
is best able to discriminate between the null and alternative hypotheses. Out of
necessity, researchers have fallen into the habit of selecting a test statistic from
the large (but nevertheless limited) set of test statistics for which the sampling
distributions are known. Sometimes this has been like fitting a square peg in a
round hole. Substantive theory in a field may suggest that the most powerful
test statistic is one whose distribution is not known to the researcher,8®
However, using the computer-intensive techniques in this book, the researcher
can select a test statistic that will maximize the ability to discriminate between
the null and alternative hypotheses and be secure in the knowledge that the
significance of that test statistic can be assessed.

the assumption that the observations are realizations of a continuous random variable. As
a practical matter, all empirical observations are measured on a discrete rather than a con-
tinuous scale and hence Normal theory derivations of sampling distributions, which
assume the variables are continuous, may be suspect.

8 Some statisticians may not be sensitive to this problem. Statistics texts and journals
are full of derivations of sampling distributions for new and novel test statistics. As a
practical matter, however, very few empirical researchers have the means to access this
literature. An empirical researcher is likely to be familiar with only a few test statistics
for which the sampling distributions under sufficiently structured null hypotheses are
known. Furthermore, Chung and Fraser [1958], Klauber [1971], Tsutakawa and Yang
[1974], Boyett and Shuster [1977], Noreen and Sepe [1981], Bowen, Noreen, and Lacey
[1981}, and Blanchard, Chow, and Noreen [1986], among others, provide examples of
situations in which the conventional parametric sampling distribution of the test statistic
suggested by substantive theory is not known.

9 Pearson [1937] argues that an advantage of conventional parametric methods over
randomization methods is that the choice of the most powerful test statistic can be made
endogenous with conventional methods. However, Lehmann and Stein [1949] and others
have pointed out that the key in making the choice of a powerful test statistic endogenous
is in the detailed specification of an alternative hypothesis. Lehmann and Stein derive
optimum randomization test statistics for a variety of alternative hypotheses.



CHAPTER TWO

Approximate
Randomization Tests

Randomization is used to test the
generic null hypothesis that one
variable (or group of variables) is
unrelated to another variable (or
group of variables). Significance is
assessed by shuffling one variable
(or set of variables) relative to
another variable (or set of variables).
Shuffling ensures that there is in fact
no relationship between the vari-
ables. If the variables are related,
then the value of the test statistic for
the original unshuffled data should
be unusual relative to the values of
the test statistic that are obtained
after shuffling.
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2.1 THE BASIC IDEA OF RANDOMIZATION TESTS

A randomization test can be used to test the hypothesis that there is a speci-
fied stochastic relationship between one set of random variables and another set
of random variables. Usually, the null hypothesis is simply that one set of var-
iables is unrelated to another set of variables. For example, suppose a researcher
is interested in whether transfer students perform differently than other students
at the University of Washington in the sophomore level introductory managerial
iccounting course. There are reasons to suspect that the performance of these
students might differ systematically. One argument is that only those students
who have proven themselves at another school (usually a community college)
will be admitted to the university as transfer students. And the preparation for
the introductory managerial accounting course provided in a community college
is not the same as at the University of Washington. Additionally, some maintain
that the best students graduating from high school tend to matriculate directly
into the University of Washington. At any rate, the alternative hypothesis is that
the performance of transfer students differs from the performance of nontransfer
students. The null hypothesis in this case is that performance (measured by
grade) in the introductory managerial accounting course is independent of (i.e.,
is unrelated to) whether the individual is a transfer student.!

To test this conjecture, data were collected concerning the grades received
by juniors who completed the introductory managerial accounting course during
one quarter. These data are displayed in Table 2.1. (At the University of Wash-
ington grades are given in increments of 1/10 of a grade point.)

Table 2.1
Grades in intreductory managerial accounting

Transfer students; (mean = 2.85)
38,1.8,1.0,3.6,3.3,2.7,3.7,2.5,3.8,2.2,25,34,2.8

N_Qnuamm (mean = 2.57)
4.0,2.5,3.6,2.5,36,1.7,2.8,2.6,2.7,2.5,2.6,2.2,2.5,2.3,1.3,3.2,26, 1.0, 2.6, 0.0,
2.8,3.0,2.5,3.1,4. ,29 2.7,39,34,3.6,3.1,0.7,0.7,2.2

Out of 47 juniors taking the course, 13 were transfer students. The absolute
value of the difference between the average grades of the two groups (transfer
and nontransfer students) is a natural choice for the test statistic. The average

UIf x and y are stochastically independent random variables, then for a given data set
all permutations of the observed values of y relative to the observed values of x were
equally likely. This is the fundamental notion that is exploited in randomization tests.
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(mean) grade earned by the transfer students was 2.85, while the mean grade
earned by nontransfer students was 2.57, so the difference is 0.28 in favor of the
transfer students. Is this difference statistically significant?

The null hypothesis is that grades are unrelated to whether a student is a
transfer student. The distribution of the absolute value of the difference in mean
grades under this null hypothesis could be constructed in the following manner.
First, copy all of the grades onto individual notecards. Second, shuffle the cards.
Third, take the first 13 cards from the top of the deck. Arbitrarily label this stack
of 13 cards “transfer students” and the stack consisting of the remaining 34 cards
“nontransfer students.” Fourth, compute and then record the absolute value of
the difference between the mean grade for the “transfer students” and the mean
grade for the “nontransfer students.” Repeat steps two through four many times.
In this manner, an empirical distribution can be constructed for the absolute
value of the difference in mean grades under the null hypothesis that grades are
unrelated to whether a student has transferred from another college. Shuffling
the cards and arbitrarily treating the first 13 cards dealt as “transfer students”
ensures that the null hypothesis is true, that is, shuffling the cards ensures that
grades are unrelated to transfer status. The null hypothesis is rejected if, relative
to this empirical distribution, the actual difference of 0.283 is unusual.

The results of shuffling the cards thousands of times are displayed in Figure
2.1.

Relative frequency

0.05
0.04
0.03
Significance level = 0.32
002
0.01 |
0 s —
0 0.2 ‘ 0.4 Absolute value of the
0.28 difference in the means

Figure 2.1 Histogram of the absolute value of the difference
in mean grades between transfer and nontransfer students
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Recall that the value of the test statistic for the original unshuffled data was
0.28. As illustrated in Figure 2.1, the value of the pseudostatistic was at least
0.28 in about 32% of the shuffles. Since it would have been reasonably likely
(i.e., probability = 0.32) to have obtained a value of the test statistic as large as
0.28 even though there is no relationship between grades and transfer status, the
null hypothesis of no relationship is not rejected.

There are several striking aspects of this approach to assessing the signifi-
cance of the test statistic. The null hypothesis is very simple — grades are inde-
pendent of whether a student has transferred from another college. No assump-
tions are made concerning the distribution of the grades. Furthermore, the data
are not a random sample from some population.

2.2 EXACT VERSUS APPROXIMATE RANDOMIZATION TESTS

Since this procedure for assessing the significance of a test statistic involves
randomizing the ordering of one variable relative to another, it is called a “ran-
domization” test. When all possible orderings (permutations) of the variables
relative to each other are exhaustively listed, the test is called an “exact random-
ization” test.> When the procedure involves randomly shuffling one variable
relative to another as in the above example, the test is called an “approximate
randomization” test.

The following example should bring out the distinction between an exact
and an approximate randomization test.

At a party, a self-proclaimed expert insisted on instructing everyone within
hearing concerning the finer points of vodka. He claimed that there were
substantial and obvious differences in quality between the finest imported
vodkas from Poland and Russia and the premium and budget brands of domestic
vodkas.

A skeptic proposed a test. The host Just happened to have four different
bottles of vodka. One was a Russian import, one a Polish import, one a heavily
advertised domestic brand sold at a premium price, and one a generic label bud-
get vodka that the host had poured into a crystal decanter. The vodka connois-
seur was shown the four bottles and was then blindfolded. He was told that he
would be presented with four different glasses of vodka, one poured from each
of the four bottles. His task was to identify which glass was poured from which
bottle by taste alone. The host marked the glasses and poured vodka into each of
them. The connoisseur then tasted each of the glasses in turn and attempted to

2 While Edgington [1969] may have originated the terms “exact” and “approximate”
randomization tests, Fisher introduced the idea of an exact randomization test in his 1935
book. The term “permutation tests” is- often used in the statistics literature to refer to
randomization tests. Unfortunately, statisticians also use the term randomization test to
refer to a postexperimental procedure to adjust significance levels when a probability
distribution is not continuous.
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identify which glass was poured from which bottle. The resuits of the taste test
appear in Table 2.2,

Table 2.2
The vodka expert
Glass 1 Glass 2 Glass 3 Glass 4
Actual contents: Polish Premium US Russian Budget US
Expert’s opinion: Polish Premium US Budget US Russian

Is the “expert” really an expert?’

The null hypothesis is that the expert’s opinion is independent of the actual
contents of the glass. All of the possible identifications that the expert could
have made are listed in Table 2.3. Each one of these possible identifications is a
permutation of the order of Polish, Premium US, Russian, and Budget US
vodkas.

If the null hypothesis is true and the expert’s opinion of the contents of the
glasses has nothing to do with the actual contents of the glasses, then each of
these permutations was equally likely. Since there are a total of 24 possible
permutations and there are seven in which two or more of the glasses are
correctly identified, the probability of the expert correctly identifying at least
two out of four glasses, given that the expert in fact cannot discriminate among
the vodkas, is 0.29 (= 7/24).

3 Fisher’s tea lady is the inspiration for this example.

4 Some would argue that this test is not interpretable unless there was explicit randomi-
zation of the order of presentation of the glasses in the experiment. Whenever possible,
such experimental randomization should be followed. Unfortunately, however, many
researchers do not have the luxury of randomly assigning treatments in experiments.
Does this invalidate the hypothesis test? For example, in the vodka tasting experiment
above, the host may attempt to help or hinder the expert by the order in which the vodkas
are presented. And, the expert may try to “psyche out” the host. Nevertheless, any such
activity by the host and the expert are based on the contents of the glasses and so the test
is still a valid test of the null hypothesis that the expert’s opinion is independent of the
contents of the glasses. The difficulty comes in interpretation of the results. If the null
hypothesis is rejected, it may be because the expert successfully psyched out the host
rather than because he can discriminate among vodkas. Campbell and Stanley [1963]
discuss interpretation of the results of quasi-experiments in which the experimenter has
little control over treatments.
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Table 2.3
Enumeration of the possible opinions of the vodka expert

Glass 1 Glass 2 Glass 3 Glass 4 # correct
* Polish Premium US  Russian Budget US 4
* Polish Premium US Budget US Russian 2
Polish Budget US Premium US Russian 1
Polish Budget US Russian Premium US 2
Polish Russian Premium US  Budget US 2
Polish Russian Budget US Premium US 1
* Premium US  Polish Russian Budget US 2
Premium US  Polish Budget US Russian 0
Premium US Russian Budget US Polish 0
Premium US Russian Polish Budget US 1
Premium US  Budget US Polish Russian 0
Premium US  Budget US Russian Polish 1
Russian Polish Premium US =~ Budget US 1
Russian Polish Budget US Premium US 0
Russian Premium US  Budget US Polish 0
* Russian Premium US Polish Budget US 2
Russian Budget US Premium US - Polish 0
Russian Budget US Polish Premium US 0
Budget US Polish Premium US  Russian 0
Budget US Polish Russian Premium US 1
* Budget US Premium US Russian Polish 2
Budget US Premium US  Polish Russian 1
Budget US Russian Polish Premium US 0
Budget US Russian Premium US  Polish 0

2.3 THE APPROACH IN APPROXIMATE RANDOMIZATION TESTS

The foregoing example used the exact randomization method; all possible
permutations of the variables relative to each other were listed and the test statis-
tic was computed for each permutation. Exact randomization is feasible, how-
ever, with present computer technology only for very small data sets.

Suppose the expert agreed to discriminate among the vodkas by smell alone
and 16 different bottles were available from which 16 different glasses of vodka
were poured. The number of permutations of 16 glasses of vodka is 16! (=1 x
2x 3 x...x 15x 16), which is a very large number. Even if one thousand of the
permutations could be generated and evaluated each second using a high-speed
computer, it would take more than six centuries to exhaust the list of possible
permutations!

Fortunately, it is not necessary to exhaust all possible permutations to arrive
at a reasonably accurate significance level for a test statistic. Ideally, one would
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like to assess the significance of the test statistic relative to the probability
distribution of the test statistic, which is generated by the exact randomization
method. However, this -probability distribution can be approximated to any
desired level of precision by sampling. Each shuffle in an approximate random-
ization test generates one permutation of the variables. A thousand shuffles can
be viewed as a sample of size 1000 from the population of all possible permu-

tations. Thus the distribution of the test statistic in 1000 (or however many
shuffles) can be used to approximate the exact randomization distribution of the
test statistic. Of course, as the number of shuffles increases, the approximation
becomes better. The question of how many shuffles is enough is deferred to the
next chapter.

Since exact randomization tests are seldom feasible, this book will hence-
forth be concerned only with approximate randomization tests. Exact and
approximate randomization tests differ only in how permutations are generated.
Edgington [1980] extensively discusses exact randomization tests and provides a
subroutine that can be used to exhaustively list all permutations.

To return to the example of testing the difference in grades between transfer
and nontransfer students, it would obviously be a tedious and an error-prone
process to actually shuffle a deck of 47 cards 1000 times and compute the
absolute value of the difference in means between the first 13 and last 34 cards
after each one of those shuffles. Fortunately, a computer can be used to simulate
the process of shuffling the cards and computing the difference in means. With
a computer, the deck can be shuffled and the test statistic computed hundreds or
thousands of times quickly, accurately, and inexpensively. Moreover, for most
problems personal computers provide sufficient computing power. Indeed, all of
the examples in this book were run on a standard Apple Maclntosh personal
computer.

Figure 2.2 illustrates the general approach used in testing hypotheses with
the approximate randomization method. The first and perhaps most important
step is to select a test statistic that is sensitive to the veracity of the substantive
theory. Then, after the data are read, the test statistic is computed. The desired
number of shuffles, NS, is set and the various counters are initialized to zero.
The algorithm then loops through the randomization procedure, which consists
of shuffling the data, computing the test statistic for the shuffled data, and then
comparing the value of the test statistic for the shuffled data to the test statistic
for the original, unshuffled data. If the pseudostatistic for the shuffled data is
greater than or equal to the actual statistic for the original unshuffled data, then
one is added to the “nge” counter.’

S“nge” is an acronym for “number greater than or equal to.”
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Select a test statistic

| Input the data I

v

Compute the actual statistic:
the value of the test statistic for the original unshuffled data

v

Set NS: the desired number of shuffles

v

Set the shuffle and nge counters to 0

— P Add 1 to shuffle

v

3
Is shuffle <NS ?
C J
* yes

Shuffle the data

v

Compute the pseudostatistic:
the value of the test statistic for the shuffled data

v

no
Q——( Is pseudostatistic > actual statistic ? )
b yes

Add 1 to nge

no

Compute the
Exit «— significance level: 4+——
(nge+1)/(NS+1)

Figure 2.2 Flowchart for an approximate randomization test
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Depending on the hypothesis and substantive theory, the data can be shuf-
fled in a number of ways. Most commonly, there is one dependent variable and
one or more explanatory variables, and the null hypothesis is that the dependent
variable is in fact unrelated to the supposed explanatory variables. In this situa-
tion, the dependent variable is shuffled relative to the explanatory variable(s).
This procedure ensures that the variables are unrelated to each other.’

The final step is to compute the ratio (nge+1)/(NS+1), which is the signifi-
cance level of the test. The null hypothesis is rejected if the significance level
(nge+1)/(NS+1) is less than or equal to the specified rejection level for the test.
This ratio requires some explanation. The ratio nge/NS is the frequency with
which the pseudostatistic for the shuffled data was greater than or equal to the
actual statistic for the unshuffled data. The significance level of the test, how-
ever, is the ratio (nge+1)/(NS+1). Why is 1 added to both nge and NS when the
significance level is computed? Without going into technical details at this
point, this minor adjustment ensures that the test is valid, that is, the pi'obability-
of rejecting the null when it is true is no greater than the rejection level specified
for the test.

A general template for testing the generic hypothesis that two variables are
unrelated is listed in the Program Appendices at the end of the book. There are
three Program Appendices — one each for BASIC, FORTRAN, and PASCAL.
Refer to the appendix for whichever language you are most familiar with. The
sections of the template that are in boldface type need to be modified for what-
ever data and test statistic are at hand. The most significant of these modifica-
tions is that code would have to be written to compute the test statistic.

As an example, this template was used to test the difference in mean grades
between transfer and nontransfer students in introductory managerial account-
ing. (See Program 2.1 in one of the Program Appendices.) In this program, the
dependent variable is the grade of a student and the explanatory variable is the
student’s transfer/nontransfer status. If the student is a transfer student, the
explanatory variable is coded 1; if the student is not a transfer student, it is coded
0. The data are stored in a file called “transfer data,” which is listed at the end of
the Program 2.1.

The program begins by opening the transfer data file. The arrays y and x are
dimensioned to allow storage of 47 observations, one for each student. The
program reads the grades and status of each student and computes the difference
in the mean grades between the transfer students (x = 1) and the nontransfer
students (x = 0). The program requests as input the number of shuffles, NS.
(When debugging a program, a small number of shuffles should be specified.)

6 There are situations, however, in which it is desirable to exert greater control over the
shuffling. In Section 2.6, stratified shuffling is described.

"More than one dependent variable can be easily accommodated by shuffling an index
vector and then using the shuffled index vector as the index for the dependent variables.
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The program then begins the shuffling procedure. The grades (stored in y )
are shuffled. Shuffling y alone results in shuffling y relative to x. After shuf-
fling, each of the grades actually given in the course will have been randomly
assigned to a student. The program then computes the difference in the mean of
the randomly assigned grades between the transfer students (x = 1) and the non-
transfer students (x = 0). If this pseudodifference is at least as large as the actual
difference in the means, one is added to the nge counter.’

The process of shuffling the grades before computing the pseudodifference
in the means ensures that the grades are unrelated to transfer/nontransfer status.
Hence, the probability distribution of the pseudodifferences for the shuffled data
is the distribution of the test statistic under the null hypothesis that grades are
unrelated to transfer status.

The final step in the program is to compute and print the significance level
of the test. The significance levels differ slightly between the BASIC, FOR-
TRAN, and PASCAL versions of the program due largely to differences in the
random number generators that are used in the shuffling algorithms. Rather than
referring to all three versions, I will make a practice in the text of referring to
only the BASIC program results. In this example, the significance level from
the BASIC program is 0.319. This means that in 318 of the 999 shuffles, the
difference in the pseudo means was at least as large as 0.283, the actual value of
the test statistic for the unshuffled data.

Also note the three lines in the program listing that follow the significance
level. These lines will be more fully explained in Appendix 3A of the next
chapter. Briefly, phi is the (unknown) significance level for an gxact randomi-
zation test run on the same data. This exact significance level is estimated using
an approximate randomization test. The printout from running the program
indicates that, given the estimated significance level of 0.319 after 999 shuffles,
the probability that the exact significance level is less than or equal to any of the
conventional rejection levels is essentially zero. Thus, even if the shuffling were
to continue and the approximation to the exact significance level were made
more precise, it is extremely unlikely that the basic conclusion (i.e., the null
hypothesis is not rejected) would be overturned.

Many (perhaps most) hypotheses in which researchers are interested can be
tested using this simple template. The template can be used, in conjunction with
any test statistic, to test the null hypothesis that two variables are unrelated.
With only minor adjustments, this template can be used to test the hypothesis
that one set of variables is unrelated to another set of variables. In much
research, this is precisely the hypothesis that the researcher would like to test.”

8 Hach time the data are shuffled, the program counts the number of transfer and non-
transfer students. This is not really necessary since the number of transfer and nontrans-
fer students never changes. The counting slows down execution speed. Usually, how-
ever, execution speed is not much of an issue and simpler programs are to be preferred to
faster but more complex programs.
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Several examples of approximate randomization tests follow.!® The intent
is to illustrate how approximate randomization tests can be used to test hypoth-
eses in a variety of situations. An important advantage of the randomization
method over conventional techniques is its generality. Once the method is
understood, it can be used to test an almost unbelievable variety of research
hypotheses. !!

2.4 EXAMPLE: VOTER TURNOUT IN THE 1844 PRESIDENTIAL ELECTION

It has been suggested that citizens will be most inclined to vote in close
elections. The 1844 U.S. presidential election was the closest that had been held
up to that time, with the exception of the 1824 election which had been decided
in the House of Representatives. In the 1844 campaign, the Democratic candi-
date James Polk was pitted against the Whig candidate Henry Clay. While the
popular vote was very close (1,338,464 for Polk versus 1,300,097 for Clay), the
vote in the electoral college was 170 for Polk versus 105 for Clay.

The US presidential election is decided in the electoral college rather than
by the popular vote. Within each state, there is a winner-take-all rule; whoever
wins the popular vote in the state gets all of the state’s electoral votes. Thus, the
incentives to vote may well differ from state to state, depending on how close
the election is in each state. In states where the election is expected to be close,
voters should be more motivated to vote than in states where the election is not
expected to be close.

Data concerning the voter turnout (or participation rate) and the spread
between the percentages of the popular vote obtained by Polk and Clay in each
state are displayed in Table 2.4. The smaller the spread, the closer the election
was in the state.

Assuming voters had some ability to forecast how close the election was
going to be in their own states, there should be a negative relationship between
participation rates and the actual vote spread. The data, which are plotted in
Figure 2.3, exhibit such a negative relationship. Roughly speaking, the partici-
pation rate does appear to decline as the spread between the votes for the two
presidential candidates increases. How likely is it that such an apparent relation-
ship would have occurred by chance?

9Even more generally, similar procedures can be used to assess the significance of any
test statistic under the null hypothesis that one set of variables is stochastically related in
a specified way to another set of variables. An empirical distribution for the test statistic
can be generated by ensuring that the stochastic relationship between the sets of variables
is as specified in the null hypothesis.

0Edgington [1980] provides additional examples.

1 Randomization tests are not appropriate, however, when the researcher is concerned
with drawing an inference about a population parameter based on a random sample. In
those cases, conventional parametric or Monte Carlo sampling techniques must be used.
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Table 2.4
Voter participation in the 1844 presidential election

State Participation® Spread®
Maine 67.5 13
New Hampshire 65.6 19
Vermont 65.7 18
Massachusetts 59.3 12
Rhode Island 39.8 20
Connecticut 76.1 5
New York 73.6 1
New Jersey 81.6 1
Pennsylvania 75.5 2
Delaware 85.0 3
Maryland 80.3 5
Virginia 54.5 6
North Carolina 79.1 5
Georgia 94.0 4
Kentucky 80.3 - 8
Tennessee 89.6 1
Louisiana 44.7 3
Alabama 82.7 18
Mississippi 89.7 13
Ohio 83.6 2
Indiana 84.9 2
Ilinois 76.3 12
Missouri 74.7 17
Arkansas 68.8 4 26
Michigan 79.3 6
National average 74.9 9

aThe percentage of eligible voters who voted in the presidential
election.

bThe absolute value of the difference in the percentage of the total
vote obtained by Polk and Clay in the state.

To be precise about this question, it is necessary to define a test statistic
which encapsulates the notion that participation rates should be negatively
related to the actual vote spread in the election. The correlation coefficient is a
natural choice in this case. The correlation between participation rates and vote
spreads is ~0.374. By convention, a large value of the test statistic should be
viewed as evidence that is consistent with the alternative hypothesis. Since a
negative correlation is expected, the test statistic will be the negative of the
correlation, or just 0.374. Defining the test statistic as the negative of the
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correlation allows us to use the standard templates without modifications . Posi-
tive values of the test statistic (i.e., negative correlations) are consistent with the
alternative hypothesis, while negative values of the test statistic (i.e., positive
correlations) are not consistent with the alternative hypothesis.
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Figure 2.3 Participation rates versus
vote spread in the 1844 presidential election

The null hypothesis is that the participation rate is unrelated to how close the
election is (i.e., each permutation of participation rates relative to vote spreads
was equally likely). The distribution of the correlation coefficient under this
null hypothesis can be approximated by shuffling the participation rate relative
the vote spread many times and, after each shuffle, computing the correlation
coefficient for the shuffled data. See Program 2.2 in the Programs Appendix of
your choice for a listing of a program to carry out this process. In the case of the
BASIC program, the significance level of the test was 0.036, i.e., on only 35 of
the 999 shuffles was the correlation negative and as large as 0.374. The three
lines following the significance level in the printout indicate the probabilities
that the exact significance level is less than or equal to 0.01, 0.05, and 0.10. In
this case, there is a great deal of confidence that the exact significance level (i.e.,
the significance level that would be obtained from an exact randomization test
on the same data) would be less than or equal to 0.05 or 0.10. In contrast, there
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is very little confidence that the exact significance level is less than 0.01. This
is, of course, to be expected since the estimated significance level of .0.036 is
greater than 0.01. Therefore, the null hypothesis that participation rates and vote
spread are unrelated can be confidently rejected at the 0.05 or 0.10 level, but not
at the 0.01 level.

2.5 EXAMPLE: SLAVEHOLDINGS AND THE VOTE FOR SECESSION

Lipset [1960] recounts the events that led to the secession of the Confed-
erate states from the Union in 1861. Three to six months after the election of
Lincoln as President in the autumn of 1860, seven southern states held referenda
in which voters elected county delegates to state conventions which were to
consider seceding from the Union. Lipset reports that

These convention-delegate elections were hotly contested in most
Southern states, and the results were closer than many realize, with
the Union forces getting over 40 per cent of the vote in many states [p.
642]. '

Lipset classified the vote for secessionist delegates by the relative slave
holdings in the counties. Slavery was an important point of friction between the
North and the South. And, as Lipset notes, “in all the southern states... the
proportion of slaves in the population served to differentiate the: wealthier from
the poorer counties....” Therefore, to the extent that the Civil War grew out of
economic conflicts or disputes over slavery, the relative proportion of slaves in a
county may serve to predict the vote on secession. Indeed, one would expect
that the higher the slave holdings, the more likely it is that a county would have
voted for secession. Indeed, this is what happened, as is evident in Table 2.5.

Table 2.5
Actual vote by county in the 1861 vote on secession

Secession Union Total

Relative High 130 (72%) 51 (28%) 181
slave Medium 92 (60%) 61 (40%) 153
holdings Low 15 (37%) 128 (63%) 203
Total 297 (55%) 240 (45%) 537

How would you go about testing the conjecture that the higher the relative
slave holdings, the more likely it is that a county would have voted for secession
and the lower the slave holdings, the more likely it is that a county would have
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voted for the Union? What test statistic would you use? How would you assess
the significance of that statistic?

One’s first impulse in this situation might be to perform a chi-squared test of
the 3 x 2 contingency table. The chi-squared test is based on comparing the
actual counts in the cells to the counts that would be expected if the vote by
county were independent of the relative slave holdings. However, the chi-
squared test is unable to distinguish between departures from expectations that
are and are not in the directions expected.'? Hence, a test based on the chi-
squared statistic is not as powerful as it could be.

Consider the high relative slave holding counties. If there were no relation-
ship between relative slave holdings and the vote, we would expect to see 55%
of the counties voting for secession and 45% voting for the Union. These are the
relative proportions of all counties voting for secession and the Union. Thus if
the vote is independent of slave holdings, then the expected counts in the cells
(rounded to the nearest whole numbers) would be as indicated in Table 2.6.

Table 2.6
Expected vote by county in the 1861 vote on secession if the vote
for secession or Union was independent of relative slave holdings:

Secession Union Total

Relative High 100 (55%) 81 (45%) 181
slave Medium 85 (55%) 68 (45%) 153
holdings Low 112 (55%) 91 (45%) 203
Total 297 (55%) 240 (45%) 537

However, we would suspect that the high relative slave holding counties
would be more inclined to vote for secession than other counties. Thus, for the
high relative slave holding counties, there should be more than 100 counties in
the secession column and less than 81 counties in the Union column. An index
of how well the data agree with a priori reasoning for the high relative slave
holding counties could be constructed as follows:

High agreement = (actual voting for secession — 100)
+ (81 — actual voting for the Union)

Similarly, an index could be constructed for the low relative slave holding
counties as follows:

12 Moreover, the chi-squared test assumes that departures from expectations are
Normally distributed.
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Low agreement = (112 — actual voting for secession)
+ (actual voting for the Union — 91)

Both of these indices will be positive and large if the reasoning is correct.

Suppose there is a dividing line for relative slave holdings and above the
dividing line the counties tend to vote for secession and below the line they tend
to vote for the Union. The medium counties present a problem since the divid-
ing line could be above, below, or in the midst of those counties. One approach
would be to simply throw out the counties. However, if the dividing line were
really above or below the medium counties, throwing out the medium counties
could lead to failure to reject a false null hypothesis. That is, throwing out the
medium counties may lead to a loss of power. A better approach would be to
construct an index for the medium counties that would be sensitive to deviations
in either direction. A natural choice of index would be:

Medium deviations = ABS(actual voting for secession — 85)
+ ABS(actual voting for the Union — 68)

Finally, combining the indices yields an interpretable test statistic:

Deviations as expected = high agreement + medium deviations
+ low agreement

For the actual data, the value of this test statistic is:
Deviations as expected = 60+14+74 = 148

That is, 148 out of 537 counties deviated from expectations under the null
hypothesis in the directions expected under the alternative hypothesis.

This is the test statistic; now how can its significance be assessed? The first
step is to recognize what the underlying data really look like. There are 537
counties and two variables — a county’s relative slave holdings and its vote. This
data can be organized as illustrated in Table 2.7.

There are actually 537 rows in this data set, one for each county. In the data
file listed below, the first column is the county’s relative slave holdings: 1 repre-
sents high, 2 represents medium, and 3 represents low. The second column is
the county’s vote: 1 represents a vote for secession and 2 represents a vote for
the Union. For example, there are 130 identical entries coded 1,1 to represent
the 130 high relative slave holding counties that voted for secession.

The procedure for assessing the significance of the test statistic is the same
as before. One of the variables (either slave holdings or vote) is shuffled. After



Example: Do you get what you pay for? 25

each shuffle, the contingency table is reconstructed and the value of the test
statistic is recomputed. As it turns out, in 999 shuffles, there was no shuffle on
which the test statistic was as large as it was for the original unshuffled data.
Therefore, the null hypothesis that the vote on secession was unrelated to rela-
tive slave holdings is rejected. BASIC, FORTRAN, and PASCAL programs to
accomplish this process are reproduced in the Programs Appendices. These
programs took much longer to execute than the other programs illustrated in this
book because there are 537 observations in the data file that must be shuffled.

Table 2.7
Listing of relative slave holdings data

L1 there are 130 of these entries
1,2 there are 51 of these entries
2,1 there are 92 of these entries
2,2 there are 61 of these entries
3,1 there are 75 of these entries
3,2 there are 128 of these entries

2.6 EXAMPLE: DO YOU GET WHAT YOU PAY FOR?

A report on skin moisturizers appeared in the November 1986 issue of
CONSUMER REPORTS. The method used to compile the ratings of the skin
moisturizers was described as follows:

We didn’t test the moisturizers in our labs, since reading labels
and analyzing ingredients couldn’t tell us how the products would
perform on a variety of skin types or which products people would
really prefer. We turned instead to a panel of 600 female readers....
We sent each panelist two products packed in plastic bottles marked
only with a red or white dot. We told them to use one product for a
week, then switch to the other... In a questionnaire we asked each
panelist to rate how well the products performed.... Our statisticians
averaged the scores, then ranked the products according to the overall
Jjudgments. 13

The results of this survey are displayed in Table 2.8.
Hopefully, it is generally true that if a consumer buys a higher priced brand
of a particular product, the quality of the product is higher as well. If the retail

'3 Copyright 1986 by Consumers Union of United States, Inc., Mount Vernon, NY
10553. Excerpted by permission from CONSUMER REPORTS, November 1986, p. 734.
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market is functioning efficiently, high-priced inferior brands should be driven
from the marketplace. An interesting question is whether the retail market is
indeed efficient or whether price and quality are unrelated. The above data
clearly indicate that the market is not completely efficient. For example, the
highest priced brand was rated third from the bottom in terms of quality by
users. Nevertheless, it is not immediately obvious that the market is completely
inefficient either. There might be some positive relationship between price and
quality. How would one approach the problem of testing whether the market is
inefficient (i.e., there is no relationship between price and quality)?

Table 2.8
Price per ounce of skin moisturizers
in order of descending estimated quality™

Rank Price per oz. Rank Price per 0z,
1 $0.83 25 $1.65
2 0.23 26 343
3 1.52 27 0.59
4 1.91 28 0.42
5 0.25 29 0.40
6 0.10 30 1.56
7 0.12 31 0.24
8 0.24 32 0.26
9 0.33 33 1.69

10 0.19 34 0.10
11 0.26 35 0.62
12 0.26 36 0.25
13 0.28 37 3.89
14 0.11 38 0.17
15 0.12 39 1.65
16 0.12 40 0.38
17 0.30 41 045
18 0.45 42 1.30
19 0.24 43 3.07
20 0.22 4 1.42
21 0.11 45 2.11
22 0.25 46 6.10
23 3.33 47 4.29
24 1.31 48 0.25

*Copyright 1986 by Consumers Union of United States, Inc.,
Mount Vernon, NY 10553. Excerpted by permission from
CONSUMER REPORTS, November 1986.
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Those who are used to classical statistical methods might approach this
problem using a variety of methods. Some would conduct a test of the correla-
tion between quality and price. Either a product-moment (Pearson) or rank
(Spearman) correlation could be computed. However, there are drawbacks to
both of these approaches. If the product-moment correlation is used, it is
implicitly assumed that price is a linear function of quality rank. For this to be
true, it would have to be the case that the difference in quality is about the same
between any two brands that are adjacent in the table. For example, the differ-
ence in quality between the two highest rated brands and between the two lowest
rated brands may be quite different. The rank correlation, on the other hand,
converts prices into ranks and thereby throws away valid information about
differences in prices. There is only a penny difference between the prices of the
two cheapest brands, but there is a $1.81 difference between the two most
expensive brands. When a rank correlation coefficient is used, this information
is ignored.,

What test statistic would be more appropriate? If a customer has selected a
brand and the market is efficient, there should not be much gain expected from
searching for a brand that is better and less expensive. It may be possible to find
a better brand, but it would be more expensive. And it may be possible to find a
cheaper brand, but it would not be as good. To simplify the discussion, suppose
there are only five brands and, in order of decreasing quality, they cost $2, $5,
$3, $4, and $1 per ounce [see Table 2.9]. The $2 brand dominates the $5, $3,
and $4 dollar brands; it is better and cheaper. The $3 brand dominates the $4
brand. If a consumer had selected the $2 brand, the expected monetary gain to
searching for a dominating brand would be zero since no brand dominates the $2
brand. If, on the other hand, the $5 brand had been chosen, the expected mone-
tary gain from searching for a dominating brand would be $0.75, since there
would be a one in four chance of saving $3 by buying the better $2 brand. See
Table 2.9 for a listing of the expected gains from searching for a dominating
brand.

Table 2.9
Illustration of the test statistic designed to gauge market efficiency

Brands listed in order Expected gain from
—of decreasing quality further searching
$2 $0
$5 ($5-$2)x0.25 = $0.75
$3 ($3-$2)x0.25 = $0.25

$4 ($4-$2)x0.25+($4-$3)x0.25 = $0.75
$1 $0
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The average expected gain across all brands in Table 2.9 from further
searching is $0.35 [= ($0+$0.75+$0.25+$0.75+$0)/5]. If the market is efficient,
the average expected gain should be small (and less than the cost of further
searching). If the market is inefficient, this number will be relatively large.

This test statistic appropriately uses both the rank and price information in a
way that has a convenient economic interpretation. However, it would be very
difficult to analytically derive a conventional small sample distribution for this
test statistic. There is no difficulty, however, in assessing the significance of the
test statistic under the null hypothesis that price and quality rankings are unre-
lated. A program to accomplish this is listed as Program 2.4 in the Program
Appendices. The average expected gain for the actual brands of moisturizers in
Table 2.8 is about $0.477 per ounce. Remarkably, in 999 trials, there was no
trial in which the expected gain was this large. This means that the expected
gain from switching products using the real data is greater than if price and
quality were completely unrelated! This evidence is consistent with a perverse
market — one in which quality tends to go down as price goes up.

2.7 STRATIFIED SHUFFLING

In the example earlier in this chapter in which the grades of transfer students
were compared to the grades of nontransfer students, one instructor assigned ali
of the grades. Suppose, however, that grades had been collected from a number
of different instructors. It is conceivable that the nontransfer students have
superior information concerning instructors’ grading practices and will tend to
enroll in classes taught by instructors with the most liberal grading policies. In
that case, it would be desirable for the researcher to control for possible differ-
ences in the grading practices of the instructors. There might appear to be a
significant difference in the performance between transfer and nontransfer
students because some nontransfer students purposefully select instructors who
assign higher grades.

Table 2.10 contains data from five instructors concerning the grades of
juniors (18 transfer students and 39 nontransfer students) who completed the
second quarter introductory financial accounting course at the University of
Washington. The mean grade earned by the transfer students was 2.29 and the
mean grade of the nontransfer students was 2.37 (a difference of 0.08).

Since there is reason to believe that grades may not be independent of the
instructor, we would not want to indiscriminately shuffle grades across instruc-
tors relative to transfer status. To control for the effects of differing grading
policies across instructors, grades could be shuffied within each instructor’s
class. In this way, the distribution of the test statistic could be generated under
the null hypothesis that within classes, grades are unrelated to whether an
individual is a transfer student.
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Table 2.10
Grades attained in financial accounting by juniors

Instructor
A B C D E
Transfer |20-30, |23,28 } 238 22,20, |07,35 [n=18
students 2.2,2.1, 1.1, 2.5, 24,23, mean
2.2 2.6 2.5 =229
32,29, 133,26, 129,33, |36,07, 1.5,3.0,
Non- |20.22, | 19,22, 125,24, |35,26, | 22,30, | _.
transfer 21,14 1.4 23,238, 1.6,3.2, 2.1,4.0,
mean
students 1.3 1.6,0.9, 1.9,2.1 =237
1.9, 1.8,
1.8, 3.6,
3.1
n=11 n=7 n=8 n=18 n=13 n=>57
mean mean mean mean mean mean
=2.30 =236 | =254 =2.24 =2.40 =234

To test the statistical significance of the difference in mean grades of 0.08,
the grades were shuffled relative to the transfer/nontransfer status variable
within each instructor’s class. This stratified shuffling is carried out in Program
2.5, which is listed in the Program Appendices. In the BASIC version of the
program, in 717 out of 999 trials the difference between the grades of the
transfer and nontransfer students was at least as large as 0.08 grade point, so the
actual difference is not statistically significant (i.e., the significance level is
0.718). That is, even if grades have nothing to do with whether a student has
transferred from another institution, the mean grades would differ by as much as
0.08 about 72% of the time.

Stratified shuffling is appropriate whenever there is reason to believe that
the value of the dependent variable depends on the value of a categorical vari-
able that is not of primary interest in the hypothesis test. In the above example,
there was concern that grades might differ between instructors, so the observa-
tions were stratified by instructor. This effectively controls for the effects on
students’ grades of this nuisance explanatory variable.
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Several nuisance categorical explanatory variables can be controlled for
simultaneously. Suppose, for example, that a student’s gender may influence the
grade the student receives. If the effect of transfer/nontransfer status on grades
is of interest, but the effects of gender or instructors on grades are not of interest,
it is desirable to control for those nuisance explanatory variables. Gender and
instructor could be simultaneously controlled for by shuffling grades relative to
transfer/nontransfer status within classes and gender. To illustrate, the grades of
all female students who have a specific instructor would be shuffled relative to
their transfer/nontransfer student status. Then the grades of all male students
with the same instructor would be shuffled relative to their transfer/nontransfer
student status. The process of shuffling within gender would be repeated for
each instructor.

This method of controlling for nuisance categorical explanatory variables by
stratified shuffling effectively controls for any relationship that might exist
between the dependent variable and nuisance categorical variables.!*

2.8 REGRESSION AND ANOVA

Two of the most common statistical procedures are regression and ANOVA,
Least-squares regression is ordinarily used to estimate a model in which the
dependent variable is a linear function of the explanatory variables. ANOVA
can be viewed as a version of least-squares regression in which all of the explan-
atory variables are categorical. The significance of test statistics produced by
regression or ANOVA can be assessed using approximate randomization
methods. In this section this application of the approximate randomization
method is briefly discussed. The discussion is brief because the applications
should be straightforward. I assume familiarity with regression and ANOVA.

Each of the estimated coefficients of a regression model, as well as the over-
all fit of the model (the r2), is a test statistic whose significance can be assessed
using the approximate randomization method.!> A variety of different hypoth-
eses can be tested, depending upon what is shuffled relative to what. The simp-
lest procedure is to shuffle the dependent variable relative to the fixed matrix of
explanatory variables. This provides significance levels for each of the test sta-
tistics under the null hypothesis that the dependent variable is unrelated to the
explanatory variables.'® When the approximate randomization method is used

14 In contrast, the most frequently used conventional methods assume that the effect of
the categorical variable is confined to a shift in the mean of the dependent variable.

15 When the matrix of explanatory variables is fixed it doesn’t make any difference
whether the estimated coefficients or their t statistics are used as the test statistics in an
approximate randomization test. This is because the t statistics are directly proportional
to the coefficients when the covariance matrix is fixed.

16Ordinarily, the null hypothesis in a conventional regression test is that the coefficients
are zero. This is different from the null hypothesis that the dependent variable is
independent of the explanatory variables. Except for the test of the significance of the
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to assess significance, there is no need to be concerned with whether the resid-
uals are Normally distributed. However, other econometric problems remain.
Heteroscedasticity, a nuisance form of dependence between the dependent and
explanatory variables, can result in inappropriately rejecting the null hypoth-
esis.!” Multicollinearity among the explanatory variables still may make it
difficult to unambiguously determine their relative importance. Nevertheless,
approximate randomization tests are a useful alternative to the usual significance
tests — particularly for small samples and where the assumption of Normal resid-
uals is questionable.

Randomization can also be used to assess the significance of test statistics in
an analysis of variance (ANOVA) table. For example, a two-way ANOVA
would partition the variance in the dependent variable into two main effects: an
interaction effect and a portion that is apparently not due to any of the explana-
tory variables.!® The test statistics could be the usual F statistics. The signifi-
cance of the F statistics, under the null hypothesis that the dependent variable is
unrelated to the explanatory variables, can be assessed by shuffling the depen-
dent variable relative to the explanatory variables. In addition, a great deal of
control is possible by shuffling within categories of the explanatory variables.
For example, suppose the effectiveness of a drug is in question, and an experi-
ment was conducted in which the drug was administered to one set of patients
and a placebo to another set of patients in five different hospitals. The possible
nuisance effect of the hospitals themselves can be effectively controlled by
shuffling the measure of effectiveness relative to the real/placebo status of the
treatment by patients within each hospital.

29 SUMMARY

In this chapter the approximate randomization method of assessing the sig-
nificance of a test statistic was introduced. This method can be used to test the
hypothesis that a dependent variable is unrelated to the explanatory variable(s).

intercept, however, the. results will often be essentially the same for conventional and
approximate randomization tests of the regression model. To see the difference in a test
of the intercept, suppose a regression is run in which there is only an intercept term (i.e.,
there is only one explanatory variable and its value is always 1). The intercept will then
be simply the mean of the dependent variable. No matter how the dependent variable is
shuffled, its mean will always be the same and hence the intercept will always be the
same. Hence, the nuil hypothesis of independence will never be rejected if a randomi-
zation test is used. On the other hand, if the mean of the dependent variable is not zero,
the conventional significance test may well result in the rejection of the null hypothesis
that the intercept term is zero.

171 am indebted to Vic Bernard for pointing this out.

18 Alternatively, the absolute value of the deviation between values of the dependent
variable and its mean could be used as the basis of the analysis. Such an analysis might
be easier to interpret than ANOVA, which is based on squaring the deviations.
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Such a test is accomplished by shuffling the dependent variable relative to the
explanatory variable(s) and recomputing the test statistic for the shuffled data.
This shuffling ensures that the dependent variable is unrelated to the explanatory
variable(s) and hence that the null hypothesis is true.

The distribution of the test statistic under this hypothesis is approximated by
shuffling the data and recomputing the test statistic many times. The signi-
ficance of the actual test statistic for the original unshuffled data is assessed
relative to this empirically generated distribution. The null hypothesis is
rejected if the actual value of the test statistic for the original unshuffled data is
unusually large relative to the values of the test statistic that would have been
expected if the dependent variable is in fact unrelated to the explanatory
variable(s).

These ideas were illustrated by testing hypotheses in a variety of situations.

In Appendix 3A, it is demonstrated that approximate randomization tests are
valid, that is, the probability of falsely rejecting the null hypothesis when it is in
fact true is no greater than the prespecified nominal rejection level for the test.

HISTORICAL PERSPECTIVE

Fisher [1966] originated the notion of a randomization test in his 1935 book
The Design of Experiments. In the two decades that followed publication of that
book, randomization tests attracted the attention of theoretical statisticians such
as Pitman [1937,1938], Pearson [1937], Scheffe [1943], Noether [1949],
Lehmann and Stein [1949], and Hoeffding [1951, 1952]. Application of
randomization tests to testing real hypotheses was impeded, however, by the
high cost of manually recomputing the test statistic many times. Statisticians
finessed this practical difficuity by constructing probability tables for generic
data (i.e., ranks and nominal categories). The end result of this effort is the
broad range of nonparametric tests found in such standard references as Siegel
[1956) and Hollander and Wolfe [1973]. All truly nonparametric tests are
special cases of exact randomization tests in which observations are, or have
been replaced by, ranks or nominal categories.
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APPENDIX 2A
THE POWER OF APPROXIMATE RANDOMIZATION TESTS

2A.1 INTRODUCTION

In this appendix, the performance of approximate randomization tests is
compared to the performance of conventional parametric tests using artificial
data. Both a conventional parametric test and an approximate randomization test
are applied to the same data and the frequencies with which the null hypothesis
is rejected are compared. The test that rejects the null hypothesis the most
frequently when it is in fact false is the more powerful test. In a nutshell, for the
data considered here, there is virtually no loss in power when an approximate
randomization test is used instead of a conventional parametric test. This is true
even when the data are generated to conform to the assumptions of the para-
metric test. Hoeffding [1952] demonstrates in greater generality that randomiza-
tion tests are asymptotically (i.e., as sample size becomes very large) as power-
ful as related conventional parametric tests when the assumptions underlying the
conventional parametric tests are true.

Two common conventional parametric tests are considered: a t test of the
difference in means between two groups and a t test of the correlation between
two variables. These two tests are special cases of common multivariate tests.
The t test of the difference in means is the univariate case of one-way analysis of
variance (ANOVA). The t test of a correlation is, loosely speaking, the uni-
variate case of multiple regression.

At the outset it should be reiterated that the null hypotheses are different for
the two methods of assessing the significance of a test statistic. When randomi-
zation is used, the null hypothesis is that the dependent variable is unrelated to
the explanatory variable(s); or, more precisely, all permutations of the dependent
variable relative to the explanatory variables were equally likely. When a
conventional parametric method is used, the null hypothesis is that the data are a
random sample from a population with certain specified characteristics.

2A.2 TESTS OF THE DIFFERENCE IN THE MEANS OF TWO GROUPS

A conventional t test is often used when a researcher is interested in the
difference in the means between two groups. The conventional parametric
pooled variance t test of the difference between the means of two groups is valid
if, in effect, the two groups are random samples from the same Normal popu-
lation. In addition, the Central Limit Theorem ensures that the t test is asymp-
totically valid if the two groups are random samples from any distribution with
finite mean and variance.
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Artificial data sets consisting of M observations each were constructed by
generating random standard Normal scores and adding a constant d to the scores
for the first half of the M observations. The test statistic is the difference in the
means between the first half and the last half of the observations. By construc-
tion, the expected value of this test statistic is d.

Two values of the constant, d = 0.0 and d = 0.5, and two sample sizes, M =
10 and M = 100, were used. For each of the two sample sizes, 1000 basic data
sets were independently generated. Each basic data set was used to generate two
derived data sets: one for the case where d = 0.0 and one for the case where d =
0.5. The only difference in the derived data sets is the constant amount d added
to the first half of the observations. For each derived data set, a pooled variance
t test of the difference in means was conducted. The frequencies with which the
null hypothesis was rejected at the 0.10 level are reported in Table 2A.1. For
example, when the derived data sets consisted of 10 observations each with the
constant d set at 0.5, the null hypothesis was rejected 31.3% of the time at the
0.10 level.

In addition, the approximate randomization method was used to assess the
significance of the difference in the means for each derived data set. This was
accomplished by shuffling the observations and computing the difference in
means between the first and last half of the shuffled observations. If the differ-
ence in means for the shuffied data was at least as large as the difference in
means for the unshuffled data, one was added to the nge counter. This process
was repeated 99 times for each data set. The null hypothesis was rejected for a
data set if, at the end of 99 shuffles, the ratio (nge+1)/100 was less than or equal
to 0.10.

The approximate randomization method is used to test the null hypothesis
that the score is independent of the group (i.e., first half or last haif) to which the
observation belongs. The frequencies with which this null hypothesis was
rejected are also reported in Table 2A.1. For example, when the derived data
sets consisted of 10 observations each with the constant d set at 0.5, the null
hypothesis was rejected 29.7% of the time at the 0.10 level.

By construction, the parametric t test is valid for this data. And, as shown in
Appendix 3A, an approximate randomization test is valid for any data and any
test statistic. Therefore, it should not be surprising that the null hypothesis is
rejected about 10% of the time at the 0.10 level when the null hypothesis is true
(i.e., d = 0.0). All of the rejection frequencies are within a 90% confidence
interval surrounding 0.10. 19

When the null hypothesis is false (i.e., d = 0.50), the parametric t test rejects
the null hypothesis slightly more frequently than does the approximate randomi-
zation test. However, it should be noted that the differences in the rejection rates

I9Rejection of the null hypothesis is a binomial event. Using the Normal approximation
to the binomial distribution, the approximate 90% confidence interval surrounding the
rejection frequency 0.100 is 0.100 £ 1.645[(.10)(.90)/1000} 12 o {.084,.116}.
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are not statistically significant.20 Thus, there is no evidence that the parametric
test is practically more powerful, even when its assumptions are satisfied.

Table 2A.1
Frequency with which the null is rejected at the 0.10 level:
Tests of the difference in two means

Sample Size
d= M=10 M=100
Pooled variance t test 0.313 0.891
Randomization 0.297 0.886
d=0.00
Pooled variance t test 0.107 0.089
Randomization 0.106 0.086

Note: The tests were conducted on 1000 independently generated
data sets, each of which consisted of M standard Normal scores. The
constant d was added to the first M/2 observations. The test statistic
was the difference in the means between the first M/2 and last M/2

observations. In the randomization tests, the observations were
shuffled 99 times.

Basically, for the data considered here, the performances of the two tests
cannot be distinguished when the data sets are constructed to be appropriate for
the conventional parametric t test. If the observations are a random sample from
a Normal population that is independent of the group to which the observation
belongs, then every possible configuration of the observed scores across groups
was equally likely. Thus, the randomization test null hypothesis is implied by
the conventional parametric t test null hypothesis. The converse is not true,
however. That is, the conventional parametric t test null hypothesis is not
implied by the randomization test null hypothesis.

Suppose an experiment is conducted in which there are two groups of two
subjects each and the scores that are observed for the subjects are —1.01, —-0.99,
0.99, and 1.01. If the randomization test null hypothesis is true, all possible
assignments of these scores to the subjects are equally likely.

20Let ft and frbe the rejection frequencies for the t test and randomization test, respec-
tively, and N be the number of data sets on which each of the tests were run. Using the
Normal approximation to the binomial, the difference in the rejection frequencies can be
tested with the ratio [(N-1) 12 (fi—fr))/[ft(1-ft)+fr(1-fr)]1/2 which is distributed approxi-
mately as Student’s t with 2N-2 degrees of freedom. The largest value of this t ratio for
the data in the table is less than 0.80.
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The test statistic for the randomization test is the difference between the
means of the two groups. The 24 (=41) possible permutations of the four obser-
vations and the difference in the means for each of these permutations are listed
in Table 2A.2.

Table 2A.2
An example of a test of the difference in means

Difference
Permutation Group 1 Group 2 in means t statistic
1 -1.01 -0.99 0.99 1.01 2.00 14142
2 -1.01 -0.99 1.01 0.99 2.00 141.42
3 -1.01 0.99 -0.99 1.01 0.04 0.03
4 -1.01 0.99 1.01 -0.99 0.04 0.03
5 -1.01 1.01 —0.99 0.99 0.00 0.00
6 -1.01 1.01 0.99 -0.99 0.00 0.00
7 099 -1.01 0.99 1.01 2.00 141.42
8 -099 -1.01 1.01 0.99 2.00 141.42
9 -0.99 0.99 -1.01 1.01 0.00 0.00
10 -0.99 0.99 1.01 -1.01 0.00 0.00
11 -0.99 1.01 099 -1.01 -0.04 -0.03
12 -0.99 1.01 -1.01 0.99 -0.04 -0.03
13 0.99 1.01 -1.01 -0.99 -2.00 -141.42
14 0.99 1.0 -099 -1.01 -2.00 -141.42
15 0.99 -0.99 1.01 -1.01 0.00 0.00
16 0.99 -0.99 -1.01 1.01 0.00 0.00
17 0.99 -1.01 1.01 -0.99 0.04 0.03
18 0.99 -1.01 -0.99 1.01 0.04 0.03
19 1.01 0.99 099 -1.01 -2.00 -141.42
20 1.01 0.99 -1.01 -0.99 =2.00 -141.42
21 1.01 -0.99 -1.01 0.99 -0.04 —0.03
22 1.01 -0.99 0.99 -1.01 -0.04 -0.03
23 1.01 -1.01 099 099 0.00 0.00
24 1.01 -1.01 -0.99 0.99 0.00 0.00

The relative frequencies of the five possible values of the test statistic are
listed in Table 2A.3.

Using an exact randomization test, the null hypothesis would never be
rejected at the 0.10 level. The largest possible value of the test statistic is 2.00,
which occurs too frequently (16.7% of the time) to reject the null hypothesis at
the 0.10 level.?!

21 f an approximate randomization test were used, the null hypothesis may be rejected
due to errors in approximating the exact randomization distribution. This source of error
decreases as the number of shuffles increases. To take an extreme case, if there were
only nine shuffles, the null. hypothesis would be incorrectly rejected 3.7% of the time.
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Table 2A.3
Relative frequencies of the differences in means

Difference Relative
in means frequency
2.00 4/24
0.04 4124
0.00 8/24
-0.04 4/24
-2.00 4/24

In contrast, a conventional parametric t test would reject the null hypothesis
far too frequently. The pooled variance t statistics for the data permutations are
listed in the last column of Table 2A.2. A t statistic of 141 with 2 degrees of
freedom is significant at the 0.001 level. Therefore, if it is true that all permuta-
tions of the data are equally likely, then the null hypothesis would be rejected at
the 0.001 level 16.7% of the time! This is because 16.7% of the possible permu-
tations result in a t statistic of 141. The difficulty is that the randomization and
conventional parametric t test are tests of different null hypotheses. While it is
true that the value of an observation is independent of the group to which the
observation belongs (which is the randomization test null hypothesis), it is not
true that the observations are a random sample from a Normal population (which
is the conventional t test null hypothesis). A randomization test is a valid test of
the hypothesis that the score is independent of the group; a conventional para-
metric t test is not necessarily a valid test of that hypothesis.

2A.2 TESTS OF THE CORRELATION BETWEEN TWO VARIABLES

A conventional t test is often used when a researcher is interested in the
correlation between two variables. The conventional parametric t test of the
correlation between two variables is valid when applied to a random sample
from a bivariate Normal population with zero correlation.

Artificial data sets consisting of M observations each were constructed by
generating two standard Normal scores for each observation. The first standard
Normal score was used as the first variable. The second variable was obtained
by multiplying the first variable by r and then adding the second Normal score.
The test statistic is the correlation between the two variables.

Two values of the constant, r=0.0 andr = 0.25, and two sample sizes, M =
10 and M = 100, were used. For each of the two sample sizes, 1000 basic data
sets were independently generated. Each basic data set was used to generate two
derived data sets: one for the case where r = 0.0 and one for the case where r =
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0.25. The only difference in the derived data sets is the constant amount r which
is multiplied by the first variable when constructing the second variable. For
each derived data set, a conventional t test of the correlation was conducted.
The frequencies with which the null hypothesis was rejected at the 0.10 level are
reported in Table 2A.4. For example, when the derived data sets consisted of
100 observations each with the constant r set at 0.25, the null hypothesis was
rejected 87.7% of the time at the 0.10 level.

Table 2A.4
Frequency with which the null is rejected at the 0.10 level:
Tests of the correlation

Sample Size

=02 M=10 M=100
t test 0.297 0.877
randomization 0.300 0.870
r=0.00
t test 0.106 0.092
randomization 0.101 0.091

Note: The tests were conducted on 1000 independently generated
data sets. Each data set consisted of M observations on two variables,
the first of which was M standard Normal scores. The values of the
second variable were generated by multiplying the values of the first
variable by r and adding another standard Normal score. The test
statistic was the correlation between the two variables.
Randomization tests involved shuffling the two variables relative to
each other 99 times.

In addition, the approximate randomization method was used to assess the
significance of the correlation for each derived data set. This was accomplished
by shuffling the second variable relative to the first and then computing the
correlation. If the correlation for the shuffled data was at least as large as the
correlation for the unshuffied data, 1 was added to the nge counter. This process
was repeated 99 times for each data set. The null hypothesis was rejected for a
data set if, at the end of 99 shuffles, the ratio (nge+1)/100 was less than or equal
to 0.10. :

The approximate randomization method is used to test the null hypothesis
that the two variables are independent. The frequencies with which this null
hypothesis was rejected are also reported in Table 2A.4. For example, when the
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derived data sets consisted of 100 observations each with the constant r set at
0.25, the null hypothesis was rejected 87.0% of the time at the 0.10 level.

By construction, the parametric t test is valid for these data. And, as shown
in Appendix 3A, an approximate randomization test is valid for any data and any
test statistic. Therefore, it should not be surprising that the null hypothesis is
rejected about 10% of the time at the 0.10 level when the null hypothesis is true
(i.e., r = 0.00). All of the rejection frequencies are within a 90% confidence
interval surrounding 0.10. And, as with the t test of the difference in the means
of two groups, when the null hypothesis is false (i.e., r = 0.25), the differences in
the rejection rates are not statistically significant.

As before, the performances of the two tests cannot be distinguished when
the data sets are constructed to be appropriate for the conventional parametric t
test. If the observations are a random sample from a bivariate Normal popula-
tion with zero covariance, then every permutation of the variables relative to
each other was equally likely. Thus, the conventional parametric t test null
hypothesis implies the randomization test null hypothesis. The converse is not
true, however. That is, the conventional parametric t test null hypothesis is not
implied by the randomization test null hypothesis.

Suppose an experiment is conducted in which observations are taken on two
variables, x and y, for four subjects. Further suppose that the observed values of
x are {2, 4, 6, 8} and the observed values of y are {1, 2, 3, 4). If the randomiza-
tion test null hypothesis is correct, all possible permutations of y relative to x are
equally likely. The 24 (= 4!) possible permutations are listed in Table 2A.5
along with the correlation associated with each permutation.

Table 2A.5
An example of a test of the correlation

1 2 3 4
Permutations of y Correlation t Statistic

1 2 3 4 1.0 +o0
1 2 4 3 0.8 1.89
1 3 2 4 0.8 1.89
1 3 4 2 0.4 0.62
1 4 2 3 04 0.62
1 4 3 2 0.2 0.29
2 1 3 4 0.8 1.89
2 1 4 3 0.6 1.06
2 3 1 4 0.4 0.62
2 3 4 1 -0.2 -0.29
2 4 3 1 -0.4 -0.62
2 4 1 3 0.0 0.00
3 4 1 2 -0.6 -1.06
3 4 2 1 -0.8 -1.89
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Permutations of y Correlation t Statistic
3 2 4 1 -04 -0.62
3 2 1 4 0.2 0.29
3 1 4 2 0.0 0.00
3 1 2 4 04 0.62
4 3 2 1 -1.0 —o0
4 3 1 2 -0.8 -1.89
4 2 1 3 -0.4 -0.62
4 2 3 1 0.8 -1.89
4 1 3 2 -04 -0.62
4 1 2 3 -0.2 -0.29

The 11 possible values of the correlation and their relative frequencies are
listed in Table 2A.6. Using an exact randomization test, the null hypothesis
would be rejected with probability 1/24 at the 0.10 level. 22

Table 2A.6
Relative frequencies of the correlation

Relative

Correlations frequenc
1.0 1/24
0.8 324
0.6 1/24
0.4 4/24
0.2 2/24
0.0 2/24
0.2 2/24
-0.4 4/24
-0.6. 1724
0.8 3/24
-1.0 1/24

The t statistics for the conventional parametric t test of the correlation are
listed in the last column of Table 2A.5. Since the t statistic for a perfect correla-
tion is infinite, the null hypothesis would be falsely rejected at any level at least
4% of the time — at the .10 level, the false rejection rate would be 16.67%.

22 If an approximate randomization test were run, the null hypothesis may be rejected
more frequently. To take an extreme example, with only nine shuffles, the null hypo-
thesis would be rejected about 6% of the time at the 0.10 rejection level.

0.06 = (1/24)(23/24)9+(3/24)(20/24)9+(1 124)(19/24)%+(4/24)(15/24)%+0...+(3/24)(1/24)°
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Once again, it must be emphasized that the randomization and conventional
parametric t test are tests of different null hypotheses. It has been assumed in
this example that the randomization null hypothesis is true; the values of the
two variables are independent (and, as a consequence, all permutations of one
variable relative to another were equally likely). This does not imply that the
observations are a random sample from a bivariate Normal population with zero
covariance, which is the null hypothesis for the conventional parametric t test of
the correlation. A randomization test is a valid test of the hypothesis that the
variables are independent; a conventional parametrlc t test is not necessarily a
valid test of that hypothesis.

2A.3 SUMMARY

The performance of approximate randomization and conventional paramet-
ric tests was compared for two common situations: a test of the difference in the
means between two groups and a test of the correlation between two variables.
Consistent with theory, the randomization test is valid for situations in which the
conventional parametric tests are valid and, furthermore, there appears to be
essentially no loss in power when a randomization test is used instead of the
conventional parametric test. On the other hand, the conventional parametric
tests are not always valid in situations in which the randomization test is valid.



CHAPTER THREE

Monte Carlo Sampling

Monte Carlo sampling is used to test
the null hypothesis that a sample was
randomly drawn from a specified
population. The test is conducted by
simulating the process of drawing
random samples from the population.
The values of the test statistic for the
simulated random samples are
compared to the value of the test
statistic for the real sample. If the
value of the test statistic for the real
sample is unusual relative to the
values for the simulated random
samples, then the null hypothesis is
rejected.

43
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3.1 INTRODUCTION

The Monte Carlo method of assessing the significance of a test statistic,
which was introduced by Barnard [1963], is used to test the hypothesis that the
data are a random sample from a specified population. This is accomplished by
drawing simulated samples from the specified population and comparing the
values of the test statistic for the simulated samples to the value of the test
statistic for the real sample. The Monte Carlo method is particularly valuable in
situations where the population distribution is known, but the sampling distribu-

“tion of the test statistic has not been analytically derived. The procedure is
illustrated in Figure 3.1.

When the Monte Carlo method is used, the population from which simulated
samples are to be drawn must be defined. The test is conducted by drawing
simulated random samples from the specified population. The test statistic is
computed for each simulated random sample and the null hypothesis is rejected
if the value of the test statistic for the actual sample is unusually large relative to
the values of the test statistic for the simulated samples. To be specific, the
significance level of the test is (nge+1)/(NS+1), where nge is the number of
simulated samples for which the value of the test statistic is at least as large as
the test statistic for the real sample, and NS is the number of simulated samples
generated from the specified population. !

As will be demonstrated in Appendix 3A, a hypothesis test based on the
significance level (nge+1)/(NS+1) is valid. That is, the probability of rejecting
the null hypothesis when it is true is no greater than the rejection level selected
for the test. The null hypothesis in this case is that the data are a random sample
drawn from the specified population.

Most commonly, there are N discrete elements in the population and a
sample of M of the elements is drawn at random (and without replacement) from
the population. The object of this sampling is to make an inference concerning
the population.

Usually, in the sampling process each element of the population has an
equal chance of being included in the sample. In sampling without replacement,
the observation is removed from the population once it has been selected for the
sample and cannot be selected again. Mechanically, sampling without replace-
ment can be carried out by assigning an identification number to each member in
the population, shuffling the identification numbers, and then designating the
first M as the sample.

! Approximate randomization tests, discussed in Chapter 2, are an important special
case of Monte Carlo sampling, so it is no accident that the structure of a Monte Carlo test
appears to be so similar to that of an approximate randomization test. The population in
an approximate randomization test is the set of permutations of one variable relative to
the others and the data are a sample of size one from this population.
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Select a test statistic
Define the population

| Input the original sample |
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Compute the actual statistic:
the value of the test statistic for the original sample
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Set NS: the desired number of simulated samples
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— Add 1 to sample
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Figure 3.1 Flowchart for Monte Carlo sampling from a defined population
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3.2 EXAMPLE: UNIFORM SAMPLING WITHOUT REPLACEMENT

A firm which manufactures high-fidelity speakers has just received its first
shipment of 1000 units of a component from a new supplier. If this component
is defective and is used in final assembly, routine diagnostic tests will uncover
the trouble and the speaker unit can be reworked. A less expensive, but still
costly, alternative is to test the components before assembly. In order to mini-
mize rework and testing costs, the supplier has agreed to the stipulation that at
least 98% of the components delivered to the factory must be free of defects.

In order to audit the supplier’s compliance with this stipulation, a random
sample of 100 components was drawn (without replacement) from the shipment.
Each of the 100 units in the random sample was tested and 4 were found to be
defective, a defect rate of 4%. When confronted with this evidence, the supplier
claimed that the sample was not representative of the entire shipment — the
'sample just happened to contain more than 2% defects. Indeed, there are two
possibilities: either the defect rate in the shipment is actually greater than 2% or,
as the supplier claims, the sample is misrepresentative. The likelihood that the
supplier is correct can be assessed using the Monte Carlo method.2

The test statistic in this case is the number of defective units in a sample of
100. The value of the test statistic is 4 for the original sample. The population
of 1000 units is alleged to contain no more than 2% defective units, or at most
20 defective units altogether. The test proceeds by constructing a mathematical
representation of the population, which in this case would be a column of 20
ones (i.e., defective components) and 980 zeros (i.e., nondefective components).
Then an artificial sample of size 100 is drawn from this model of the population,
taking care to exactly mimic the way in which the real sample was selected from
the real population. The test statistic is computed for the artificial sample and

2 The exact probability of obtaining 4 or more defects in a sample of 100 taken without
replacement from a lot of 1000 in which 20 are defective is given by the hypergeometric
distribution and is 0.131. One might ask why the Monte Carlo method is used when the
exact probability can be obtained. First, plainly speaking, most researchers would not
realize that the hypergeometric distribution is appropriate in this instance. Second, it
would be difficult for most researchers to obtain the value of the hypergeometric distri-
bution for these parameter values ; ordinary tables don’t go up to lot sizes of 1000. Well,
why not fall back on the binomial approximation to the hypergeometric distribution? In
other words, why not assume that the sampling is done with replacement (the binomial
assumption) and that the probability of obtaining a defective unit on any one draw is just
0.02? Indeed, use of the binomial approximation would yield a probability of 0.141,
which is quite close to the actual probability of 0.131. However, most researchers would
have practical difficulties in finding this probability since ordinary tables for the binomial
don’t extend up to sample sizes of 100. Well, why not use the Normal approximation to
the binomial distribution? If this approximation is done correctly, the probability level
would be computed as 0.142. 1would speculate, however, that most researchers, if they
got this far, would neglect to make the continuity correction (i.e., integrating from 3.5
rather than from 4) and compute a probability level of 0.077, which is quite a bit different
from the actual probability of 0.131. The point here is that even in this simple example,
using conventional methods properly requires considerable statistical expertise.



An Example of a Test of Whether a Sample is Random 47

compared to the value of the test statistic for the real sample. This simulation of
the sampling procedure is repeated many times and, as with approximate
randomization tests, the significance of the test statistic is given by the ratio
(nge+1)/(NS+1), where NS is the number of artificial samples drawn from the
hypothesized population, and nge is the number of artificial samples for which
the value of the test statistic is equal to or greater than the value of the test
statistic for the real sample.

See Program 3.1 in the Programs Appendix of your choice for a listing of a
computer program that carries out this test. Referring to the results of running
the BASIC program, the probability of obtaining 4 or more defects in a sample
size of 100 is 0.119. That is, there were 4 or more defects in 118 of the 999
artificially constructed samples.

3.3 ANEXAMPLE OF A TEST OF WHETHER A SAMPLE IS RANDOM

The last example illustrates a situation in which it is known that the data are
a random sample. The question in such a situation is whether the random
sample was drawn from the population that is specified in the null hypothesis.
Less commonly, the population from which a sample is drawn is known and the
question is whether the sample is a random sample.

Suppose you are trying to decide whether to follow an investment analyst’s
advice and you have in front of you the analyst’s “Ten Best Picks for 1986 list
which he had mailed to clients at the end of 1985. The ten stocks the analyst
selected and their prices and dividends are listed in Table 3.1.

The total investment in the portfolio would have been $438 and the value of
the portfolio at the end of the year, including dividends, was $468.873. Thus the
rate of return on the portfolio was 7.05% [=($468.873 -$438.00)/$438.00].
While positive, this rate of return may or may not have been better than could
have been earned by selecting a portfolio at random.

A natural null hypothesis to consider is that the method used by the analyst
to select stocks is substantively equivalent to selecting stocks at random. That
is, the null hypothesis is that an investor would be just as well off selecting
stocks by throwing darts at the financial page as relying on the analyst’s advice.
The alternative one-tailed hypothesis would be that the portfolio selected by the
analyst is not random and that funds invested as suggested by the analyst would
earn returns exceeding the returns on funds invested in randomly selected
portfolios.3

The test statistic is the rate of return on the portfolio. The significance of
this test statistic can be assessed by randomly selecting portfolios of ten stocks

3 Over the long haul, an analyst can do better than average by selecting riskier stocks
since higher risks generally earn higher returns. Thus, a more revealing test would
control for the riskiness of the analyst’s portfolio.
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and comparing the returns on those random portfolios to the returns on the
analyst’s portfolio. The null hypothesis is that the analyst’s portfolio is sub-
stantively a random sample of stocks listed on the New York Stock Exchange.
Since the population from which the analyst selected the portfolio is known, the
only question is whether the analyst’s choices were essentially random.

Table 3.1
The stocks picked by the analyst

Price at Price at Dividend

12/31/85 12/31/86 for 1986

PPG INDUSTRIES INC 51.000 72.875 1.880
HILTON HOTELS CORP 64.875 67.250 1.800
GENERAL ELECTRIC CO 72.750 86.000 2.370
MCDERMOTT INTL INC 18.250 21.750 1.800
LOUISIANA LAND & EXPLORATION 30.250 27.250 1.000
DRESSER INDUSTRIES INC 18.125 19.375 0.700
MCDONALD’S CORP 80.875 60.875 0.645
WEST POINT-PEPPERELL 43.375 52.125 2.385
SERVICE CORP INTERNATIONAL 31.250 24.750 0.293
AMERADA HESS CORP 27.250 23.750 .0.000
Total 438.00 456.00 12.873

A program to carry out this test is listed as Program 3.2 in the Programs
Appendix of your choice. Out of 999 randomly formed portfolios, about 26%
had a return as high as 7.05%. Following the usual academic formulation, the
null hypothesis that the analyst’s selections were random cannot be rejected at
conventional levels of significance.

3.4 MONTE CARLO AND APPROXIMATE RANDOMIZATION TESTS

Sampling without replacement can be structured as an approximate random-
ization test if each element in the population has an equal chance of being
included in the sample. Mechanically this would be done by shuffling a dummy
variable that is a column of M ones and N -M zeros. After shuffling, a value of
1 indicates that the observation is included in the sample and a value of 0 indi-
cates that the observation is not included in the sample. In the routine that com-
putes the test statistic, an observation is ignored if the value of the dummy
variable for that observation is 0.

4 On the other hand, the analyst can point to his success in beating 72% of the randomly
formed portfolios. Conventional academic rejection levels such as 10% and 5% may be
unnecessarily rigid — particularly when some decision needs to be made based on the
evidence at hand.
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There is symmetry. Sampling without replacement can be viewed as a
special case of an approximate randomization test, but an approximate randomi-
zation test can also be viewed as a special case of a Monte Carlo test. In the case
of a randomization test, the population consists of all possible permutations of
one variable relative to another. The actual data consist of a sample of size one
from that population, i.e., in the actual data, there is one and only one of the
possible permutations. The approximate randomization test is conducted by
sampling (with replacement) from the population of possible permutations.
Since Monte Carlo tests are valid (see Appendix 3A to this chapter) and approx-
imate randomization tests are Monte Carlo tests, approximate randomization
tests are also valid.

3.5 CONCLUSION

The key element in the Monte Carlo sampling method, as in conventional
parametric methods, is the population that is specified in the null hypothesis. In
each of the above examples, the population that should be used in the test was
clear. However, that will not always be the case. Bootstrap resampling, which
is discussed in the next chapter, takes one approach to specifying the population
to be used in generating the artificial data. In addition, a researcher can always
fall back on the models of populations used in conventional parametric tests.>
For example, sampling from a standard Normal population can be easily simu-
lated. There would be no apparent advantage to doing this when the exact sam-
pling distribution of the test statistic is known. However, the exact sampling
distributions are not known for all possible test statistics (e.g., the median) even
when sampling from the standard Normal population.

In general, a valid Monte Carlo significance level can be computed for any
test statistic that is a function of data drawn from any specified population. The
population does not have to have a familiar, well-behaved distribution studied by
statisticians; the population can be entirely arbitrary. The only requirement is
that relative frequencies of any two distinct elements in the population must be
specified in some manner.5

5 Rubinstein [1981] and Cooke, Craven, and Clarke [1982] describe how to generate
random samples from a variety of populations including the binomial, Poisson, geomet-
ric, exponential, Normal, Student’s t, chi-squared, F, gamma, beta, Weibel, and Cauchy.
Briefly, random sampling from such populations can be simulated by generating a uni-
formly distributed random number between 0 and 1 and then inverting the cumulative
distribution function form of the model. The value of a test statistic can be computed for
the simulated random sample and the significance of the actual value of the test statistic
can then be assessed relative to the values for the simulated samples in the usual way.
Software packages such as IMSL, NAG, and NUMERICAL RECIPES contain subrou-
tines that generate random variables from many of these distributions.

6 Two elements in a population are distinct if they result in different values of the test
statistic when substituted for each other in some sample drawn from the population.
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APPENDIX 3A
VALIDITY OF COMPUTER-INTENSIVE HYPOTHESIS TESTS

3A.1 THE NOTION OF THE VALIDITY OF A TEST

The probability of falsely rejecting the null hypothesis should be no greater
than the rejection level of the test. For example, if the rejection level is 0.10, the
probability of rejecting the null hypothesis when it is true should be no greater
than 0.10. Ideally, the probability of falsely rejecting the null hypothesis would
be exactly 0.10.

A test is valid if the probability of rejecting the null hypothesis, when it is
true, is less than or equal to the rejection level of the test. A test is exactly valid
if the probability of falsely rejecting the null hypothesis is equal to the rejection
level of the test. As will be demonstrated in this appendix, a Monte Carlo hy-
pothesis test is valid for any preset rejection level and is, under many circum-
stances, for practical purposes exactly valid as well. This conclusion holds for
approximate randomization tests and bootstrap tests (to be discussed in the next
chapter) since they are both special cases of the Monte Carlo method of assess-
ing significance.

Hoeffding [1952] and Box and Andersen [1955] prove that exact randomi-
zation tests are valid but do not address the validity of approximate randomiza-
tion tests. Dwass [1957] proves the validity of approximate randomization tests
under the assumption that there are an infinite number of possible permutations
of the data and that the value of the test statistic is different for each permuta-
tion. Edgington [1969] provides an intuitive explanation for the validity of
approximate randomization tests under the same assumption. Noreen [1986]
proves that approximate randomization tests are, in general, valid without
invoking the Dwass assumptions.

Foutz [1980] proves that exactly valid Monte Carlo tests can be constructed
by employing an auxiliary random variable to break ties. The discussion below
is built on the Foutz argument and extends it to consider the case where the
researcher chooses not to use an auxiliary random variable.

3A.2 VALIDITY USING AN AUXILIARY RANDOM VARIABLE

Let the test statistic t be a function of the data matrix X, which has a known
distribution under the null hypothesis. The Monte Carlo method consists of gen-
erating NS independent samples X |, X;, ..., Xyg from the null distribution. In
the case of an approximate randomization test, these independent samples are
generated by permuting at least one of the elements of X relative to the others.
For notational convenience, assume the NS samples are ordered so that:
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t(Xl) 2 l(X2) 2 2 t(XNs)
Define: nge = max{integer k | t(X}) 2 t(Xg) fork =0, ..., NS}

X is the original data and ¢(Xg) is the value of the test statistic for the ori-
ginal data. The random variable nge is the number of times the value of the test
statistic for the simulated data is greater than or equal to the the value of the test
statistic for the original data. The null hypothesis is rejected at the o level of
rejection if (nge+1)/(NS+1) < o.

The claim is that this test is valid; that is, prob{(nge+1)/(NS+1)<at} < o
The potential for tied test statistics creates some difficulty in the proof. To
eliminate ties, generate NS+1 auxiliary random variables €, ..., &g that are
uniformly distributed on an arbitrary small real interval (-8, +8).7 Transform
the test statistics by adding to them these random disturbances.

t'(Xi) = t(Xi) + &; fori=0,.., NS
Adding this auxiliary random variable eliminates tied test statistics, so that
t'(Xl) > l'(XZ) S>> t‘(XNS)

The transformed value of the test statistic for the original data t'(X ) must fall in
one of the NS+1 intervals:

(oo, t'()(NS)]' ey (t'(X2)’t'(x])] ’ (f(xl)’ )

Under the null hypothesis, the observed value of the test statistic t'(Xg) for
the original data is a sample of size one from a distribution that is independent
of, and identical to, the distribution of ¢'(X;) for all i. Under this condition, the
probability that t'(X) falls into any specific interval above is 1/(NS+1). The
random variable nge' is defined by

nge' = max{integer k | t'(Xy) 2 t'(Xg) fork =0, ..., NS}

Or, nge' is the number of intervals above that are contained in the half-closed
interval [t'(X(), *). Hence, nge' can take on any integer value from 0 to NS and
each of these integer values is equally likely under the null hypothesis. There-
fore, given the rejection level o, if NS is selected so that o (INS+1) is an integer,
then

7 Assume that the interval is chosen to be so small that it has the effect of only breaking

ties between test statistics. In other words, if (X;) < t(X,), then t'(X,) < t'(Xj). Any 8 that
satisfies the following condition will suffice: & <min{ I'(X,)-tX i 1>01).
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prob((nge+1) < aUNS+1)} = a(NS+1)/(NS+1) =01

or
prob{EMSa}= o
NS+1

This demonstrates that if NS is selected so that a(NS+1) is an integer, and if
the auxiliary randomization is carried out to ensure that there are no ties, then a
Monte Carlo test is exactly valid. That is, the probability of rejecting the null
hypothesis when it is true is exactly equal to the rejection level for the test.

Common rejection levels are 0.01, 0.05, and 0.10. If o is restricted to this
set, then setting NS = 100k — 1, where k is any positive integer, will satisfy the
condition that o(NS+1) is an integer. For example, NS = 99 or 199 or 999 will
satisfy the condition for o= 0.01, 0.05, and 0.10.

3A.3 VALIDITY WITHOUT AN AUXILIARY RANDOM VARIABLE

The use of an auxiliary random variable to break ties (i.e., convert the
distribution of the test statistic into a continuous variable measured on the real
line) would be bothersome to most empirical researchers. It is unsettling to
explicitly allow a conclusion drawn from an experiment to depend on a gratui-
tous flip of the coin.

If auxiliary randomization is omitted, the test will not necessarily be exact,
but it will still be valid in that the probability of rejecting the null hypothesis
when it is true will be no more than the nominal rejection level of the test.

To see this, suppose that the interval (-8, 8) is chosen to be so small so that
ift(X;) < t(Xj ), then t'(X;) < t'(X;). If § is chosen to satisfy this condition, then
the auxiliary randomization wifl have no effect on the hypothesis test unless
1(Xg) = t(X;) for some i. The effect of auxiliary randomization in that case is to
randomly partition the samples X ; for which (X ) = t(X;) into two groups. The
samples in the first group are counted as if t(X() < t(X;) and the samples in the
second group are counted asif t(Xq) > t(X;). Recall that nge' is the number of
samples for which the value of the test statistic is greater than or equal to the
value of the test statistic for the original data, taking into account this auxiliary
randomization. And recall that nge is the number of samples for which the value
of the test statistic is greater than or equal to the value of the test statistic for the
original data without resort to auxiliary randomization. The difference between
nge and nge' is just the number of samples for which t(Xy) = t(X;) and, as a
consequence of auxiliary randomization, are counted as if t(Xg) > t(X;). In other
words, nge cannot be less than nge'. Therefore,
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nge+1 nge'+1 _
prob{ - <o }<prob] =< =0
{ NS+1 } { NS+1 }

The implication is that a Monte Carlo hypothesis test based on the ratio
(nge+1)/(NS+1) is valid. Note that even in the absence of auxiliary randomiza-
tion, the test is exactly valid unless t(X() = t(X;) for some sample i.

3A.5 DISCUSSION

Despite this reassurance, researchers should consider using auxiliary ran-
domization whenever t(Xg) = t(X;) for some sample i. First, auxiliary randomi-
zation ensures that the test is exactly valid. Second, because auxiliary randomi-
zation increases the probability of rejecting the null hypothesis when there are
tied test statistics, auxiliary randomization increases the power of the test.

On the other hand, how serious is the bias of the Monte Carlo method
against rejecting the null hypothesis when auxiliary randomization is not used?
The bias is likely to be most pronounced in randomization tests conducted on
small data sets. For example, if a randomization test is conducted on just four
observations of two variables, there are only 24 (= 4!) possible permutations of
one of the variables relative to the other. If the data are shuffled 99 times, the
likelihood of t(Xq) = t(X;) for some i is about 98.5%. Table 3A.1 indicates how
seriously an approximate randomization test, without auxiliary randomization, is
biased against rejecting the null hypothesis when it is true. With as few as seven
observations to be shuffled, the bias is negligible.

Table 3A.1
The probability of falsely rejecting the null hypothesis

at the o rejection level using an approximate randomization test:
(NS=99)

The exact probability of falsely rejecting the null hypothesis

o K =4l K =5! K = 6! K=7! K =38!
0.01 0.0006 0.0064 0.0093 0.0099 0.0100
0.05 0.0285 0.0458 0.0493 0.0499 0.0500

0: 10 0.0791 0.0958 0.0993 0.0999 0.1000
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APPENDIX 3B
CONFIDENCE LEVELS FOR COMPUTER-INTENSIVE TESTS

Computer-intensive hypothesis tests are conducted by sampling from a
specified distribution using Monte Carlo simulation. (In the case of approximate
randomization tests, the assumed population consists of all permutations of a
variable. The original data are a sample of size one from this population.) In the
last appendix, it was shown that the Monte Carlo significance level, (nge+1)
J(NS+1), for a test statistic is valid for any number of Monte Carlo trials NS.
That is, the probability of rejecting the null hypothesis that the data are a random
sample from the assumed population is no higher than the rejection level of the
test. Despite the fact that the test is valid for any NS, no matter how small,
confidence in the inferences drawn from the test increases as NS is increased. In
this appendix, the relationship between NS and the confidence level associated
with the test is explored.

. nge+1l
Leté= lim o
NS—so0o NS +1

If ¢ were known, then the null hypothesis should be rejected if and only if ¢
is less than or equal to o, the rejection level of the test. But ¢ is not known; it
can only be approximated with any finite number of Monte Carlo trials. For any
given NS, the null hypothesis is rejected if (nge+1)/(NS+1) is less than or equal
to the rejection level-of the test. But, even if (nge+1)/(NS+1) < @, it may not be
true that ¢ < o If the null hypothesis is rejected, but ¢ is actually greater than o,
an incorrect inference has been drawn. Or, if the null hypothesis is not rejected,
but ¢ is actually less than or equal to 0., then an incorrect inference has also been
drawn. Fortunately, it is possible to compute, for given nge and NS, the poster-
ior probability B that & < .. This probability B can be interpreted as the confi-
dence level of the test.

By Bayes’ Theorem,

Y prob(ngel ¢, NS)prob(¢INS)
o<a

B = prob(¢<cl nge, NS) =
) prob(ngel$,NS)prob(4iNS)
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But prob(¢ | NS) = prob(¢), so

2 prob(ngel ¢, NS)prob(¢)

<o
B = prob(¢<oinge,NS) =

Eprob(ngelq), NS)prob(9)
¢

The posterior probability B depends on the prior beliefs, prob(¢), concerning
the distribution of ¢. For simplicity, we will assume that ¢ is a uniformly
distributed random variable on the closed interval {0, 1]; that is, the probability
density function of ¢ is f(¢) = 1 for 0 < ¢ < 1. To be honest, in some settings ¢
cannot be uniformly distributed. For example, in approximate randomization
tests there are only a finite number of permutations of the data and therefore
only a finite number of different values of the test statistic. However, the
uniform distribution is the limiting case as the number of equally likely possible
values of the test statistic becomes large. Practically, there is no difference
between the confidence levels computed using the uniform distribution and the
confidence levels using a discrete distribution if the data are shuffled 99 times or
more and there are more than about 500 possible different test statistics.

To distinguish the uniform prior from the more general case, Bu will denote
the posterior probability when the prior is uniform.

f aprob(ngelq), NS)do
0

Bu = prob(¢<oac ] nge, NS, uniform prior) = 1
f prob(ngel$,NS)do
0

¢ is the probability of obtaining a value of the test statistic greater than or
equal to the actual value of the test statistic on any one Monte Carlo trial.
Hence, prob(nge | NS, ¢) is the binomial probability:

prob(nge | NS, ¢) =( NS )¢nge(l _¢)NS~nge
nge

Therefore,
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o
f ( " ) ¢"e(1-NS e dg
nge
Bu = prob(¢<c | nge, NS, uniform prior) = 0
r 1
( N )¢“g°(1«b)NS‘"g“ do
J 0 nge

o
¢"81-4)NS e do
Bu = prob(¢<c.| nge, NS, uniform prior) = 0

1
’ on8Y(1-pfNS-nee 4o
0

The expression on the right-hand side of the above equation is the cumula-
tive incomplete beta function with parameters nge+1 and NS-nge+1. Pu is tabu-
lated in the Probability Tables Appendix for various rejection levels, signifi-
cance levels, and values of NS. For example, suppose that the significance level
of the test, (nge+1)/(NS+1), is 0.06 with NS = 99. Consulting Table A, the
probability that the actual value of ¢ is less than or equal to 0.10 is 0.942.
Therefore, one can be reasonably confident that the null hypothesis should be
rejected. If, on the other hand, the significance level is 0.10 with NS = 99, then
the probability that the actual value of ¢ is less than or equal to 0.10 is only
0.549 and so the null hypothesis would be rejected with relatively little confi-
dence at the 0.10 level.

Suppose that the significance level of the test is 0.14 with NS = 99. How
confident can we be that the actual value of ¢ is actually greater than 0.10 and
the null hypothesis should not be rejected at the 0.10 level? Again, referring to
Table A, the probability that the actual value of ¢ is less than or equal to 0.10 is
0.124. Therefore, the probability that the actual value of ¢ is greater than 0.10 is
0.876 (= 1-0.124).

Another way to look at this problem is to estimate a confidence interval for
¢. In this approach, the confidence level Pu is preselected and a confidence
interval is estimated such that the probability that the actual value of ¢ lies
within that interval is Pu. Let aB‘l be implicitly defined by

gy Bu= prob(OS¢SaBul nge, NS, uniform prior) if the null is rejected.
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Bu= prob(ozﬁ<¢S1 I nge, NS, uniform prioy if the null is not rejected.

The parameter g, can be interpreted as the end point of a one-sided
confidence interval for ¢. To be precise, when the null hypothesis is rejected,
the confidence interval is 0< ¢Saﬁu and Bu is the probability that the-actual value
of ¢ lies within that interval. When the null hypothesis is not rejected, the
confidence interval is aﬁu<¢'<'1 and Pu is the probability that ¢ lies within that
interval. Values of o u When the null hypothesis is rejected are listed in Table
B of the Probability Tables Appendix. For example, if the significance level
(nge+1)/(NS+1) is 0.05 after 99 shuffles, then with probability 0.95, the actual
value of ¢ is less than or equal to 0.089. The 95% confidence interval with a
uniform prior is therefore 0.000<$<0.089.

Values of oy, when the null hypothesis is not rejected are listed in Table C
of the Probability Tables Appendix. For example, if the significance level
(nge+1)/(NS+1) is 0.11 after 99 shuffles, then with probability 0.95, the actual
value of ¢ is greater than 0.063. The 95% confidence interval with a uniform
prior is therefore 0.063<¢<1.000.

It is prudent practice to report either the confidence level or a confidence
interval whenever the significance of a test statistic is reported. It should be kept
in mind, however, that the tables provided in this book are for a uniform prior.
That is, the tables assume that in the mind of the researcher, any value of ¢ be-
tween 0 and 1 is equally likely.
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APPENDIX 3C
THE POWER OF COMPUTER-INTENSIVE HYPOTHESIS TESTS

Computer-intensive hypothesis tests are conducted by sampling from a
specified distribution using Monte Carlo simulation. (In the case of approximate
randomization tests, the assumed population consists of all permutations of a
variable. The original data are a sample of size one from this population.) In
Appendix 3A, it was shown that the Monte Carlo significance level,
(nge+1)/(NS+1), for a test statistic is valid for any number of Monte Carlo trials
NS. That is, the probability of rejecting the null hypothesis that the data are a
random sample from the assumed population is no higher than the rejection level
of the test. Even though the test is valid for any NS, no matter how small, the
power of a test increases as NS is increased.® In this appendix, the relationship
between NS and the power of a test is explored.

. nge+l
Let¢= lim =
Ns_MNS+1

If the null hypothesis is true, then on average ¢ will be 0.5. If the test statis-
tic is selected with care and the alternative hypothesis is true, then ¢ will be very
small.

For example, consider the case of sampling from a Normal population with
mean | and variance 1, i.e., N(it, 1). A random sample of size M is drawn from
this population. Suppose the null hypothesis is that the sample was randomly
drawn from a Normal population with mean 0 and variance 1. This hypothesis
could be tested by generating NS samples from a N(0, 1) population and com-
paring the sample means from these NS samples to the sample mean for the
original sample. The null hypothesis would be rejected if (nge+1)/(NS+1) < o

Suppose the sample mean for the original sample is pg. Then ¢ is the
probability of drawing a random sample of size M with a mean at least as large
as Jg from a N(0, 1) population. Thus, in this case ¢ = 1 - d>N(u0\/M), where
@y is the cumulative standard Normal probability function. If p = 0, then ¢ is
uniformly distributed on the closed interval [0, 1]. However, as | increases, the
mass of the distribution of ¢ shifts toward zero and eventually all of the proba-
bility mass will be concentrated on the point ¢ = 0. In other words, if 1 is large
enough, the value of ¢ is, for all practical purposes, always zero.

8 Hope {1968] demonstrates that the power of a Monte Carlo test for fixed o is an
increasing function of NS.



Appendix 3C The Power of Computer-Intensive Hypothesis Tests 59

In general, the size of ¢ is an index of the level of departure of the data from
the null hypothesis. If the alternative hypothesis is true, ¢ will tend toward zero.

The probability of obtaining a value of the test statistic on any one Monte
Carlo trial that is greater than or equal to the value of the test statistic for the
original sample is just ¢. The probability of obtaining nge values of the test
statistic in NS Monte Carlo trials that are greater than or equal to the value of the
test statistic for the original data is given by the binomial probability:

prob(nge | NS, ¢) =( NS )¢“g°( 1-¢)NS-nge
nge

The null hypothesis is rejected if and only if (nge+1)/(NS+1) < o or, equiv-
alently, if and only if nge < o(NS+1) — 1. Assumiing that NS is chosen so that
o(NS+1) is an integer, then the probability of rejecting the null hypothesis, con-
ditional on o, NS, and ¢, is given by the cumulative binomial probability
function:® |

a(NS+1)-1

prob(reject | o, NS, ¢) = 2 ( NS )¢nge(l _¢)NS—nge
nge

nge=0

This expression is the power of the Monte Carlo test conditional on o, NS, and
¢. Given the rejection level o, the probability of rejecting the null hypothesis is
an increasing function of NS and a decreasing function of ¢. Table 3C.1 shows
the probability of rejection for various combinations of o, NS, and ¢. For
example, if NS = 999 and ¢ = 0.08, then the probability of rejecting the nuil
hypothesis at the o = 0.10 level is 0.987.

Unfortunately, this does not tell us what we would really like to know. This
power calculation is conditional on ¢, which depends on the original sample that
was drawn. We would really like to know the probability of rejecting the null
hypothesis across all samples that could be drawn from the specified population
(in this case, N(0, 1)). This probability is a complicated expression for even
simple cases and it is difficult to evaluate. The general form of the expression of
the power of a Monte Carlo test conditional only on ¢ and NS is as follows.

9 Marriot [1979] constructs similar tables to those that appear in this appendix using the
Normal approximation to the cumulative binomial function.
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a(NS+1)-1

1
prob(reject | o, NS) = Z ( NS )J ¢nge(1“¢)NS~ngePf0b(¢)d¢
nge /fg
nge=0

where prob(¢) is a function of the actual population from which the original
sample is drawn. Hope [1968] evaluates this expression for the power of a
Monte Carlo test for several cases, including the example of samples drawn
from a N(u, 1) population. When the variance of the population is known, the
uniformly most powerful parametric test of the hypothesis that the sample is
drawn from a N(0, 1) population is a simple test of the sample mean. The power
of the Monte Carlo approach cannot exceed the power of this parametric
approach, but it can come close.

Using numerical methods, Hope solved for the maximum loss in power for
NS = 19 and NS = 39. When the rejection level o is set at 0.05, the maximum
loss in power is 0.0855 for NS = 19 and is 0.0428 for NS =39. This is the maxi-
mum loss in power; ordinarily, the loss in power will be less than this for the
case of sampling from a N(, 1). Assuming that the loss in power is approxi-
mately inversely related to NS, the maximum loss in power is of the order 0.02
when NS = 99 and 0.002 when NS = 999,10 Thus, when NS = 999 and the
rejection level is set at 0.05, the loss in power is negligible from using the Monte
Carlo approach to assessing the significance of the sample mean rather than the
conventional parametric approach, even when the assumptions of the conven-
tional parametric approach are satisfied and it provides the uniformly most
powerful approach. '

10The function “loss in power” = 0.0855(19/NS)?962 fits the data. Using this function,
the power loss when NS = 99 is 0.0175 and when NS = 999 is 0.0019.
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Table 3C.1
The probability of rejecting the nuil hypothesis in NS Monte Carlo trials as
a function of the rejection level o, and the asymptotic significance level ¢

o=0.01

99 370 409 451 499 551 609 672 743 820 906
199 407 464 527 594 665 738 810 879 939 983
499 441 533 630 727 817 892 948 982 996 1.000
999 459 589 718 832 917 969 992 999  1.000 1.000

9999 487 843 983 1.000 1.000 1.000 1.000 1.000 1.000 1.000

a=0.05

¢
99 445 539 637 734 823 897 95| 983 997 1.000
199 461 593 724 838  .92) 971 993 999  1.000 1.000
499 475 680 850 951 990 999 1.000 1.000 1.000 1.000
999 483 760 935 991 1.000 1.000 1 000 1.000 1.000 1.000
9999 495 991 1.000 1.000 1.000 1.000 I 000 1.000 1.000 1.000

a=10.10

)
99 464 600 .732 845 926 973 994 999 1.000 1.000
199 475 664 827 934 983 997  1.000 1.000 1.000 1.000
499 484 767 .939 .993 1.000 1.000 1.000 1.000  1.000 1.000
999 489 855 987 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9999 496 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000




CHAPTER FOUR

Bootstrap
Resampling

Bootstrap resampling is the most
recent development in computer-
intensive methods. It can be used
when the objective of the test is to
draw a conclusion about a population
based on a random sample. In boot-
strap methods, artificial samples are
drawn (with replacement) from the
sample itself. These bootstrap
samples can be used in a variety of
ways to estimate the significance
level of a test statistic. While several
bootstrap methods are very easy to
use and are extremely flexible,
bootstrap methods appear to be
unreliable and should be used with
caution.

63
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4.1. INTRODUCTION :

The last chapter and this chapter are concerned with using a random sample
to test a hypothesis about the population from which it was drawn. A test
statistic is selected that is sensitive to whether the null or alternative hypothesis
is true. To simplify matters, I always define the test statistic so that it will tend
to be large for a random sampie if the alternative hypothesis about the popula-
tion is true and to be small if the null hypothesis is true. Since random samples
drawn from the same population will differ, there will be natural variability in
the test statistic. Thus, relatively large values of the test statistic could occur
solely by chance even if the null hypothesis is true. The significance level of a
test statistic should be the probability that a hypothetical random sample drawn
from the hypothetical null hypothesis population would yield a value of the test
statistic at least as large as for the real sample. Bootstrap methods pioneered by
Efron for estimating confidence intervals can be modified to estimate signifi-
cance levels. There are indeed many bootstrap methods that could be used.
Two of the methods are discussed in this chapter and two in the appendices, but
you should be aware that there are other bootstrap methods that could be used
and new methods are being almost continuously developed. The two methods
discussed here were selected because they are very easy to use, are relatively
easy to understand (and to explain), and seem to work as well as more compli-
cated methods for purposes of estimating significance levels.

To fully explain bootstrap methods, a more formal approach than I have
taken in the book to this point is unavoidable. Bear with me and concentrate.
Let x be a hypothetical random sample from the null hypothesis population.
The function t(-) defines the test statistic; for example, t(x) is the value of the
test statistic for the hypothetical random sample x. The hypothetical random
sample x is a random variable, so t(x) is also a random variable which has its
own probability function. The probability that t(x) would be greater than any
particular value, say h, is called the “sampling distribution of t(x)” and is
formally described by prob(t(x)=h).

Now let x; be the real random sample from the real population; t(x) is the
value of the test statistic for that real sample. A hypothesis test consists of cal-
culating how unusual t(x) is relative to the sampling distribution of t(x). That
is, the significance of the test statistic ideally is prob(t(x)2t(x)) and the rule for
rejecting the null hypothesis is:

Reject if prob(t(x)2t(xy)) < o
The problem in assessing a significance level thus reduces to estimating the

sampling distribution of the test statistic under the nuil hypothesis, i.e., the prob-
ability distribution of t(x). If the null hypothesis population can be completely
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specified, then the sampling distribution can be estimated using Monte Carlo
sampling as described in the previous chapter. The sampling distribution is
estimated by drawing simulated random samples from the null hypothesis
population. The significance level is essentially the proportion of simulated
samples for which the value of the test statistic was at least as large as for the
original sample.!

A major stumbling block in the application of the Monte Carlo method is the
problem of specifying an appropriate null hypothesis population from which to
simulate drawing random samples. While the researcher can always fall back on
the standard assumptions made in conventional parametric tests (e.g., the popu-
lation is Normal), sometimes such an assumption may seem courageous or even
foolhardy and may not efficiently exploit all of the information in the sample.

In fact, given a sample from a population, the nonparametric maximum like-
lihood estimate of the population distribution is the sample itself.2 The start-
ling implication, which Efron [1979] first suggested, is that when the sample
contains all of the available information about the population, why not proceed
as if the sample is the population for purposes of estimating the sampling
distribution of the test statistic? That is, apply Monte Carlo procedures, sam-
pling with replacement from the sample itself.?> This may seem to be an odd
suggestion, but it appears to work surprisingly well in practice.

It is important to be very clear about how this bootstrap resampling is
accomplished. A sample can be visualized as a matrix of values, with rows
representing cases and columns representing variables. Ordinarily, bootstrap
samples are constructed by drawing at random, with replacement, entire rows
from the matrix of values. Stated differently, bootstrap samples are constructed
by selecting entire cases from the original sample. The values of the various
variables identified with a particular case stay together in the bootstrap sample.

Slipping back into formalism, let 5.x, be a bootstrap sample drawn from the
original sample x,. Then t(gx,) is the value of the test statistic for the bootstrap
sample gx,. Since px, is a random variable, t(gX,) is also a random variable,
The probability that t(5x,) is at least as large as some value, say h, is called the
“bootstrap sampling distribution of 5x,.” This bootstrap sampling distribution
can be used in various ways to estimate the sampling distribution of t(x).

! The idea behind conventional parametric tests is the same, but conventional paramet-
ric significance levels are mathematically derived. A conventional parametric signifi-
cance level can be interpreted as the limiting significance level of a Monte Carlo
hypothesis test as the number of Monte Carlo samples is increased without limit.

2 Efron and Tibshirani (1986]. To be more precise, if the sample consists of the M
observations {X |, X,, ..., Xp;}, the maximum likelihood nonparametric estimator of the
population distribution is the probability function that places probability mass 1/M on
each of the observations x;.

3 Sampling with replacement is consistent with a population that is essentially infinite.
While this may seem unrealistic in many settings, sampling without replacement from the
sample would always reproduce the sample itself.
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Two methods of estimating significance levels based on the bootstrap samp-
ling distribution are discussed in this chapter. The “shift” method assumes that
the bootstrap sampling distribution and the null hypothesis sampling distribution
have the same shape but different central locations. The “Normal approxima-
tion” method assumes that the null hypothesis sampling distribution is Normal;
the bootstrap sampling distribution is used only to estimate the variance of the
Normal distribution. Two other bootstrap methods are briefly discussed in the
appendices to this chapter. There are other bootstrap methods as well. Unfor-
tunately, at present, all bootstrap methods for testing hypotheses must be
regarded as speculative. Little is known about the performance of these methods
except for very large samples. A bootstrap method may or may not yield
reliable significance levels in a given situation, and it is difficult to tell whether
or not it is reliable without knowing more about the population than what is
contained in the sample. In general, the results of bootstrap tests should be in-
terpreted with a great deal of caution. However, bootstrap tests have one great
advantage over conventional parametric tests — they can be used in situations in
which the conventional parametric sampling distribution of the test statistic is
not known. For example, bootstrap resampling can be used to test the signifi-
cance of the median from a small sample. Additionally, the two methods dis-
cussed in this chapter can be applied with very little effort to a test of just about
any test statistic.

4.2 BOOTSTRAP THEORY

4.2.1 THE SHIFT METHOD

Recall that the null hypothesis sampling distribution is prob(t(x)=h) and the
bootstrap sampling distribution is given by prob(t(gxo)=h). x represents a
hypothetical random sample from the null hypothesis population and px,
represents a bootstrap random sample. The real, original sample is represented
by x¢ and the value of the test statistic for that sample by t(xg) Ideally, in a
hypothesis test, the rule should be:

Reject if prob(t(x)2t(x)) < o

The problem is how to specify the sampling distribution of t(x). In the shift
method, it is assumed that the shapes of the bootstrap sampling distribution and
the null hypothesis sampling distribution are the same — but their locations
differ. To conduct a hypothesis test, the location of the bootstrap sampling dis-
tribution is shifted so that it is centered over the location where the distribution
of t(x) should be centered.

Let T be the expected value of the test statistic for random samples drawn
from the null hypothesis population. This is where the sampling distribution of
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t(x) should be centered. And let 5T be the expected value of the test statistic for
bootstrap random samples. This is where the bootstrap sampling distribution is
centered.

To center the bootstrap sampling distribution over the location where the
null hypothesis sampling distribution should be centered, subtract from each
value of t(3x,) its expected value and then add back the expected value of t(x).
This transformation bodily shifts the whole bootstrap sampling distribution over
so that it is centered over the location where the null hypothesis sampling distri-
bution should be centered. An example of this process is illustrated in Figure
4.1. The bootstrap sampling distribution is depicted in the top panel. (In prac-
tice, the expected value of the test statistic for bootstrap samples, g% will usually
be quite close to the value of the test statistic for the original sample, t(xg). The
difference is exaggerated in the illustration.) The entire bootstrap sampling dis-
tribution is shifted to the left in the lower panel so that its mean coincides with
the mean of the null hypothesis sampling distribution, T. The significance level
of the test statistic is the shaded portion of the bootstrap sampling distribution to
the right of t(xp).

This hypothesis test can be formally derived as follows. Assume the null
hypothesis and bootstrap sampling distributions have the same shapes:

prob(t(x)-T = h) = prob(t(3x,)—g?) 2 h) for all h.*

This particular assumption leads to a test based on the bootstrap sampling
distribution that is equivalent to a test based on the sampling distribution of t(x).

prob(t(x) 2 t(xy)) = prob(t(x)—T 2 t(x))—1)
= Prob(t(gxy)—gt 2 t(x)~-1)
= prob(t(gxg) 2 t(xy)—T+T)
Following the above chain of reasoning, the rule
Reject if prob(t(gx,) 2 t(x)—T+5T) < o

is equivalent to the rule
Reject if prob(t(x)2t(x,)) < o

And, of course, the null hypothesis should be rejected if prob(t(x)2t(xy)) < o.

4 This is actually a stronger assumption than is required; the sampling distributions
need only agree at a single value of h, namely, h = t(xg)-.
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Thus, assuming that prob(t(x)}-t 2 h) = prob(t(3xp-41) 2 h), a test based on the
bootstrap sampling distribution is equivalent to a test based on the null hypoth-
esis sampling distribution.

T txg)
Figure 4.1 The bootstrap sampling distribution shift method

The significance level prob(t(gx,) = t(x)-1+,T) can be estimated using
Monte Carlo simulation. The quantity on the right-hand side of the inequality,
t(xo}-T+57, is a constant. For convenience, this constant will be called the
“criterion value.” t(x,) is the value of the test statistic for the original sample.
The parameter 7 is the expected value of the test statistic for hypothetical random
samples drawn from the null hypothesis population.’> The parameter 57 is the
expected value of the test statistic for bootstrap random samples. The sample
mean of the bootstrap samples from the Monte Carlo simulation can be used as
the estimate of ;7. The value t(zx,) is a random variable which depends on the
bootstrap samples 5 x, that are drawn from the original sample.

3 The expected value of the test statistic for random values drawn from the null hypoth-
esis population may not be known. In that case, a bootstrap test is not feasible. For that
matter, a conventional parametric test isn’t feasible either. A randomization test, on the
other hand, does not require an estimate of T.
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The significance level can be estimated using usual Monte Carlo methods
with only minor modifications. The test statistic is computed and saved for each
bootstrap sample. After all of the bootstrap samples have been drawn, the
sample mean of the bootstrap test statistics is computed, which in turn is used to
calculate the criterion value. Then the value of the test statistic for each of the
bootstrap samples is compared to the criterion value. The null hypothesis is re-
jected if (nge+1)/(NS+1)< ., where nge is the number of bootstrap samples for
which the value of the test statistic exceeded the criterion value and NS is the
number of bootstrap samples. The method is very easy to implement and re-
quires no thought once a test statistic has been selected.

As stated earlier, this method is equivalent to shifting the bootstrap sampling
distribution and using it as if it is the null hypothesis sampling distribution.
Note that prob(t(z x4 ) 2 t(x o—T+g7) is equivalent to prob(t(g xg )-g T+T = t(xp)).
The bootstrap sampling distribution is shifted by subtracting its mean, ;T , and
adding back the mean of the null hypothesis test statistic, 7.

4.2.2 THE NORMAL APPROXIMATION METHOD

Central limit theorems suggest that for many test statistics, if the sample is
sufficiently large, the random variable z = (t(x)-T)/stddev(t(x)) is approxi-
mately standard Normal.5 The term in the denominator of the random variable
z, stddev(t(x)), is the standard deviation of the test statistic when sampling
from the null hypothesis population. It may be difficult or impossible to analyt-
ically derive the value of this standard deviation without making very strong
assumptions about the null hypothesis population. Efron [1979] suggests instead
that the standard deviation of the bootstrap sampling distribution be used to
estimate the standard deviation of the null hypothesis sampling distribution.
Symbolically, we assume stddev(t( sXp) = stddev(t(x)).

Mechanically, this means bootstrap samples are drawn exactly as before, but
they are only used to compute the sample standard deviation. In essence, we
assume that the shape of the null hypothesis sampling distribution is Normal and
the bootstrap sampling distribution is only used to estimate the variance of the
Normal distribution.

The hypothesis test takes the following form:

Reject if P(z2z)) <o

where z, = (t(xo)—‘c)/stddev(t(on)) and @(z2 z,) is the probability that a standard
Normal random variable would be as large as z,,
This hypothesis test can be derived as follows:

prob(t(x)2t(x,)) = prob(t(x)—t 2 t(x)-1)

6 The most familiar case is when t(.) is the sample mean of N observations that are
drawn from the same population.
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prob(t(x)2t(x,)) =prob{ tx)tT 5 x0T }
stddev(t(x ) stddev(t(x))

= prob{z 2 (1(xy)-T)/stddev(t(G;x,)) )

=Pz 21z

Like the bootstrap sampling distribution shift method, the Normal approxi-
mation method is very easy to use, and once a test statistic has been defined the
procedure can be carried out automatically.

Template 4.1 in the Program Appendix of your choice can be used to assess
the significance of virtually any test statistic using both the bootstrap sampling
distribution shift method and the Normal approximation method. The two
methods will usually produce very similar significance levels. As long as one of
the methods is used, however, there is very little cost to using them both, so you
might as well. Most of the template is self-explanatory. However, there is one
detail that is quite important and that may be somewhat mysterious. An index
variable is used to indicate which observations in the original sample are to be
used when the test statistic is computed.” This index variable is initialized
when the sample observations are read. The initialization sets the first element
of the variable equal to 1, the second element equal to 2, and so on. Then the
first time the ComputeStatistic subroutine is called, all of the observations in the
sample will be included once and only once in calculation of the test statistic.
Within the bootstrap resampling loop, new values are assigned to the elements
of the index variable.- Each of the integers between 1 and M has an equal chance
of being assigned to each element of the index variable whenever the Draw-
BootstrapSample subroutine is called. The index vector identifies which obser-
vations in the original sample are included in the bootstrap sample.

Another detail that may be puzzling is that the values of the test statistics for
the bootstrap samples are stored and then the program cycles back through all of
them to determine the significance level (nge+1)/(NS+1). This is done because
the criterion value is a function of the estimated bootstrap sampling distribution
mean, which is not known until after all of the bootstrap samples have been
drawn.

7 The advantage of using such an index variable is that one subroutine can be used to
compute the value of the test statistic for both the original data and the bootstrap samples.
There are also some efficiencies to using such an index when the test statistic is a
function of more than just one variable.
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4.3 AN EXAMPLE

Suppose you have drawn a random sample of 20 values from a population
and you are interested in testing whether the mean of the population is greater
than zero. These sample values appear in Table 4.1.

Since the mean of the null hypothesis population is zero, the expected mean
of any random sample is also zero (i.e., T=0). The sample mean for the above
data is 0.137 (i.., t(x) = 0.137). What is the likelihood that the sample mean
would have been this large if the null hypothesis is true?

Table 4.1
A random sample from a population

0.464, 0.060, 1.486, 1.022, 1.394, 0.906, 1.179, —-1.501, -0.690, 1.372
-0.048, -1.376, ~1.010, —0.005, 1.393, -1.787, -0.105, -1.339, 1.041, 0.279

The significance level of the sample mean is estimated using both the shift
and Normal approximation methods in Program 4.1. As will usually be the case,
the two methods give very similar answers. Be sure to note how the index var-
iable is used in the computation of the test statistic.

To illustrate the versatility of the bootstrap sampling distribution shift
method, suppose you are interested in testing whether the mean value of the
observations is zero, after throwing out all observations more than 1.5 standard

deviations from the sample mean. (It might, for example, be desirable to delete
unusually large observations in a test in order to reduce the influence of out-

liers.) A program to test the significance of this test statistic is listed as Program
4.2.3 The important point to note here is that these techniques can be easily
applied to testing the significance of quite complicated test statistics with no
modification in the template.

8 1tis important to note that the procedure applied to the bootstrap samples exactly
mimics the procedure applied to the original sample. That is, for each bootstrap sample,
the sample mean and the sample standard deviation are computed and then outliers are
deleted based on that mean and that standard deviation. The outliers are not deleted
based on the original sample’s mean and standard deviation.
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4.4 RELIABILITY OF BOOTSTRAP TESTS

Bootstrap methods can be used to estimate a significance level quickly and
easily for virtually any test statistic; but, can these significance levels be trusted?

The data in Table 4.2 were actually drawn from a standard Normal popula-
tion. We can obtain some notion of the reliability of bootstrap methods by
drawing many, say 1000, independent samples from this population. For each
sample, a test can be conducted on the hypothesis that the population mean is
zero using both of the bootstrap procedures (with NS = 99) and, for comparison,
a conventional t test. Since the population mean is in fact zero, if the test is
reliable the null hypothesis should be rejected about 5% of the time at the 0.05
level and 10% of the time at the 0.10 level. The results are displayed in Table
4.3 for various sample sizes and for two alternative hypotheses: the mean is
greater than zero and the mean is less than zero.

Table 4.2
Reliability of a bootstrap resampling test of the mean: 1000 samples of size
M drawn from a standard Normal population (NS = 99)

=20 M=40 M=80 M=160

2=0.05

Test that the mean is greater than it actually is
ttest 0.059 0.047 0.053 0.057
shift method bootstrap 0.076 0.064 0.068 0.064
Normal approx bootstrap 0.072 0.056 0.059 0.057
joint bootstrap 0.068 0.056 0.058 0.052

Test that the mean is less than it actually is
t test 0.050 0.037 0.050 0.048
shift method bootstrap 0.064 0.047 0.048 0.053
Normal approx bootstrap 0.063 0.049 0.057 0.050
joint bootstrap 0.059 0.040 0.046 0.043
©=0.10

Test that the mean is greater than it actually is
t test 0.106 0.092 0.115 0.112
shift method bootstrap 0.117 0.095 0.112 0.114
Normal approx bootstrap 0.125 0.101 0.114 0.116
joint bootstrap 0.111 0.092 0.107 0.106

Test that the mean is less than it actually is

t test 0.101 0.106 0.091 0.098
shift method bootstrap 0.113 0.109 0.093 0.095
Normal approx bootstrap 0.125 0.104 0.095 0.096

joint bootstrap 0.107 0.102 0.086 0.087
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For example, when the sample consists of only 20 observations drawn from
a standard Normal population, the null hypothesis is rejected 5.9% of the time at
the 0.10 level when the parametric t test is used and the alternative hypothesis is
that the mean is greater than it actually is. In contrast, the bootstrap shift method
rejects the null hypothesis 7.6% of the time and the bootstrap Normal approx-
imation method rejects 7.2% of the time. A slightly more conservative bootstrap
test can be obtained by adopting the rule that the null hypothesis is rejected only
if both the shift method and the Normal approximation method reject the null
hypothesis. Using this “joint bootstrap” rule, the null hypothesis is rejected only
6.8% of the time. The conventional t test is exactly calibrated in this situation,
so if the experiment were repeated an infinite number of times, the rejection rate
would approach 5% for the conventional t test. This is not the case with the
bootstrap tests. It is extremely unlikely that the bootstrap rejection rate would
settle down to 5% if more samples were drawn.” Even so, the bootstrap rejec-
tion levels do not appear to be too far off the mark. While the rejection rates for
the parametric t -test are correct for samples from the standard Normal popula-
tion, the bootstrap rejection rates are reasonably close.

Similar experiments were conducted for two other populations where the
assumptions of the t test are not satisfied. Since bootstrap methods do not
assume a particular distribution for the population, they may perform better than
the conventional t test when its population assumptions are violated.

The first population in this experiment is the standard Lognormal. Values of
this population are defined by the relationship x = exp(z), where z is a standard
Normal random variable. The mean of this population is ve. The values drawn
from the second population, called the Lognormal error population, were gener-
ated by a compound process. With probability 0.8 the observation was zero and
with probability 0.2, the observation was drawn from the standard Lognormal
population.!® The mean of the Lognormal error population is 0.2v.

In all hypothesis tests, the hypothesized mean under the null hypothesis was
the actual mean of the population.

The results of those experiments are disclosed in Tables 4.3 and 4.4. The
rejection rates for bootstrap methods and the conventional t test are incorrect for
samples drawn from these populations.!! When the alternative hypothesis is
that the mean is less than it actually is, the null hypothesis is rejected less

9 The probability is essentially zero of rejecting the null hypothesis at least 68 times out
of 1000, when the probability of rejecting on any one trial is 0.05. Thus the asymptotic
probability of rejection at the 0.05 level using the joint bootstrap test is greater than 0.05.
10 Similar populations have been used to model the errors in recordmg transactions in
accounting records. Ordinarily, there is no error when a transaction is recorded; and
when there is an error, the amount of the error is itself a random variable.

! The tests reported in the table are one-sided. Had a two-tailed test been conducted,
the null hypothesis would have been rejected about the correct number of times. This
underlines the importance of conducting one-tailed tests when investigating the perfor-
mance of procedures for testing hypotheses.
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frequently than it should be. When the alternative hypothesis is that the mean is
greater than it actually is, the null hypothesis is rejected too frequently.

Table 4.3
Reliability of a bootstrap resampling test of the mean: 1000 samples of size
M drawn from a standard logNormal population* (NS = 99)

M=20 M=40 M=80 M=l

«=0.0

Test that the mean is greater than it actually is
t test 0.008 0.010 0.015 0.022
shift method bootstrap 0014 0.014 0.018 0.027
Normal approx bootstrap 0.011 0.013 0.017 0.024
joint bootstrap 0.009 0.009 0.013 0.021

Test that the mean is less than it actually is
t test 0.153 0.149 0.124 0.109
shift method bootstrap . 0.180 0.167 0.136 0.119
Normal approx bootstrap 0.167 0.161 0.124 0.113
joint bootstrap 0.165 0.158 0.119 0.107
=0.10

Test that the mean is greater than it actually is
t test 0.032 0.038 0.062 0.067
shift method bootstrap 0.041 0.040 0.053 0.060
Normal approx bootstrap 0.049 0.051 0.063 0.068
joint bootstrap 0.037 0.037 0.049 0.055

Test that the mean is less than it actually is

t test 0.210 0.211 0.178 0.152
shift method bootstrap 0.229 0.216 0.191 0.162
Normal approx bootstrap 0.223 0.217 0.183 0.159
joint bootstrap 0.219 0.211 0.180 0.154

*The values x are defined by x = €%, where z is a random drawing from a standard
Normal population. The mean of this population is ve.

When the sample size is increased, all of the methods are more reliable.
This should be expected. If the sample size is increased without bound, event-
ually there will be very little to distinguish the sample from the population. If
the sample is large enough to be indistinguishable from the population, then the
sample will serve quite well as a surrogate for the population and bootstrap
methods will usually work quite splendidly. 12 ’

12Bjckel and Freedman [1981] and Singh [1981] investigate the asymptotic properties of
the bootstrap. Interestingly enough, as Bickel and Freedman point out, the bootstrap does
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Table 4.4
Reliability of a bootstrap resampling test of the mean: 1000 samples of size
M drawn from a standard lognormal error population* (NS = 99)

M=20 M=40 M=80 M=160

=0.05

Test that the mean is greater than it actually is
t test 0.003 0.004 0.008 0.008
shift method bootstrap 0.006 0.013 0.012 0.017
Normal approx bootstrap 0.006 0.009 0.010 0.015
joint bootstrap 0.005 0.009 0.009 0.012

Test that the mean is less than it actually is
t test 0.276 0.222 0.165 0.128
shift method bootstrap 0.328 0.249 0.184 0.151
Normal approx bootstrap 0.301 0.227 0.170 0.134
joint bootstrap 0.299 0.226 0.166 0.131
¢=0.10

Test that the mean is greater than it actually is
t test 0.012 0.028 0.033 0.051
shift method bootstrap 0.021 0.033 0.037 0.043
Normal approx bootstrap 0.027 0.038 0.039 0.053
joint bootstrap 0.018 0.031 0.031 0.042

Test that the mean js less than it actually is

t test 0.337 0.278 0.216 0.194
shift method bootstrap 0.363 0.296 0.225 0.200
Normal approx bootstrap 0.352 0.287 0.224 0.193
joint bootstrap 0.347 0.284 0.220 0.192

*The values x are defined by prob(x = 0) = 0.9; prob(x = ¢Z) = 0.1; where z is a random
drawing from a standard Normal population. The mean of this population is 0.1v€.

The conventional t test and bootstrap methods appear to be roughly equiva-
lent in these particular experiments. '3 This is good news and bad news for the

not always provide asymptotically reliable confidence intervals. For example, the boot-
strap is illsuited to assessing the confidence interval for the maximum value of a sample
from a uniform distribution.

131t may be possible to modify the bootstrap test so that it is more reliable. Efron [1984]
suggests elaborate procedures for improving bootstrap confidence intervals that are
derived using a particular stochastic model. It appears to me that, using a similar line of
reasoning, this particular stochastic model leads to the implication that, unlike the confi-
dence interval, no adjustment of the hypothesis test is called for. Nevertheless, I tried a
number of ad hoc procedures, including procedures similar to those used by Efron for
adjusting confidence intervals, to improve the reliability of the bootstrap test. None
worked.
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bootstrap. It is good news in the sense that the bootstrap does so well when
compared to the conventional parametric test, even though the t test is known to
be robust. It is bad news in the sense that there is no apparent advantage to
using the bootstrap test when testing the mean for these populations even though
the assumptions of the t test are violated.!4 Since the bootstrap avoids making
the strong distributional assumptions required for the t test, it might be hoped
that it would outperform the conventiorial parametric test when its assumptions
are violated. At least in these experiments, that didn’t happen.

There are, however, two great advantages that the bootstrap methods pos-
sess. First, they can be applied more or less automatically. All that is required
is a definition of the test statistic and the expected value of the test statistic for
random samples drawn from the null hypothesis population. Second, bootstrap
methods can be used to assess the significance of a test statistic even if its samp-
ling distribution cannot be analytically derived. In a nutshell, bootstrap methods
are far simpler to use and are much more flexible than conventional methods.

Nonetheless, there is the problem that bootstrap methods may not be reliable
in a given situation, Like all Monte Carlo tests, a bootstrap test is a valid test of
a null hypothesis. However, the null hypothesis may not be what the researcher
really wants to test. Assuming that the original data are indeed a random
sample, the null hypothesis in a bootstrap test is a joint hypothesis with two
parts. When the shift method is used, the null hypothesis is that the expected
value of the test statistic for random samples drawn from the null hypothesis
population is T and that the shape of the bootstrap sampling distribution
approximates the underlying sampling distribution (i.e., prob{t(x)-t 2 h} =
prob{t(on)—Br)'Z h}). The researcher is generally only interested in the first
part of this joint hypothesis, but the null may be rejected because either part is
false (or, of course, by chance).

The assumption that prob{t(x)—'c > h} = prob{t(gx)T) 2 h} may or may
not be warranted, depending on the test statistic that is used and the population
from which the sample is drawn. For example, as discussed above, the bootstrap
appears to be unreliable when the mean is tested in a small or moderately sized
sample drawn from a Lognormal population or Lognormal error population. -
The unreliability of the shift method for a test of the mean from these two popu-
lations implies that bootstrap sampling distribution does not always satisfactorily
approximate underlying sampling distribution.

Figure 4.1 can be used to illustrate one reason why the assumption under-
lying the shift method may be inappropriate. In the illustration, the bootstrap
sampling distribution was shifted to the left. Some values of the test statistic
that are under the curve after the shift has been made may be impossible. For

14power comparisons would be misleading. Since the bootstrap test falsely rejects the
null hypothesis more frequently than the ¢ test, it is likely that it is technically the more
powerful test. However, this power does not come without cost.
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example, if the test statistic is the standard deviation of the observations, a.
negative value of the test statistic is impossible. After shifting, the sampling dis-
tribution is clearly misspecified in the left tail if some of the probability mass is
over negative values. And if the distribution is misspecified to the left of the
origin, it must also be misspecified elsewhere since the total area under the curve
must be one.

In the case of the Normal approximation method, the null hypothesis is that
(1) the expected value of the test statistic for random samples drawn from the
null hypothesis population is 7; (2) (t(xy)-7)/stddev(t(x)) is approximately
standard Normal; and (3) the standard deviation of the bootstrap sampling distri-
bution is approximately equal to the standard deviation of the underlying sampl-
ing distribution. The only part of this joint hypothesis in which the researcher is
really interested is the first part, but the null hypothesis could be rejected
because any of the three parts are false. There is some comfort in the observa-
tion that the Normal approximation is likely to be adequate for very large
samples; but, it may not be satisfactory for small samples. In particular, for
small samples, the sampling distribution of the test statistic can be strongly
asymmetric; whereas, of course, the Normal distribution is symmetric.

It is possible that general and useful statements can be made concerning
situations in which these approximations are exact enough; however, thus far,
statisticians have confined their work to the asymptotics (i.e., very large sample
properties) of bootstrap methods. Except in pathological cases, if the sample is
large enough, bootstrap methods will work satisfactorily simply because the
sample becomes indistinguishable from the population if the sample is large
enough. On the other hand, the small sample properties of bootstrap methods
have been investigated only via simulation for specific cases. It would be risky
to extrapolate from those cases to others. I suspect that one would have to know
something about the population from which the sample was drawn, apart from
the sample itself, in order to be able to conclude with reasonable certitude that
the bootstrap is reliable. But, of course, if more were known about the popula-
tion that just the sample, such information should be taken into account and the
bootstrap — which uses just the information in the sample — might be inefficient.

Because of the unknown reliability of the bootstrap method for any given
case, it would be not be prudent to base inferences solely on the results of a
bootstrap test — unless there is no alternative. There would be no alternative if,
for example, a conventional parametric sampling distribution of the test statistic
is not known and a randomization test is not feasible.!5

15 A necessary condition to conduct a randomization test is that there are at least two
variables so that one can be shuffled relative to the other.



78  Chapter 4 Bootstrap Resampling

4.5 CONCLUSION

Bootstrap methods are used to estimate the sampling distribution of the test
statistic by drawing artificial samples from the original sample itself. This
procedure is theoretically justifiable when the sample contains all of the avail-
able information about the population. Two methods of applying the bootstrap
approach to hypothesis testing were discussed ~ the bootstrap sampling distribu-
tion shift méthod and the Normal approximation method. These methods are
very easy to use and very flexible. All that is required is a well-defined test
statistic and a specified value of the test statistic under the null hypothesis.
However, a bootstrap hypothesis test may not be reliable. And, unfortunately,
not enough basic research has been done to characterize when the methods can
be expected to be reliable. 'S Until the results of such research are available, use
of the bootstrap should be reserved for situations in which other tests are inap-
propriate.

16 In specific applications, simulations can be performed to assess the reliability of the
method, but such simulations will only be convincing when the population is available for
repeated sampling. Biddle, Bruton, and Siegel [1986], for example, suggest that a boot-
strap method be used by auditors to assess confidence intervals for errors in accounting
records. This would be a dangerous suggestion without some evidence that the bootstrap
method they propose actually works in real accounting populations. They take the neces-
sary step of simulating the performance of their bootstrap method using complete
accounting records from several firms. To the extent that the accounting records of other
firms resemble those of the firms used by Biddle, Bruton, and Siegel, their results can be
extrapolated to other firms.
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APPENDIX 4A
THE SAMPLE TRANSFORMATION METHOD

The sample transformation method is, at first glance, the most intuitive
application of the bootstrap idea to hypothesis testing. In the sample transform-
ation method, the sample values are transformed so that the sample has the char-
acteristic assumed, under the null hypothesis, for the population from which the
sample was supposedly drawn. After this transformation, the sample can “stand
in” or “proxy” for the population in the usual Monte Carlo simulation of repeat-
ed sampling.

Take, for example, the data in Table 4.1. In this case, the null hypothesis
might be that the mean of the population is zero, so the sample values are ad-
justed so that the mean of the sample is zero. This could be done in a variety of
ways, but the most obvious is simply to subtract the sample mean from each of
the values in the sample. After this simple transformation, the sample has the
characteristic that is assumed for the population; namely, a mean of zero. The
sampling distribution of the test statistic under the null hypothesis is estimated
by drawing samples from this adjusted sample, which proxies for the null
hypothesis population.

I have, however, glossed over a difficulty in implementing the sample
transformation method. It may not be obvious how to adjust the sample so that
it has the characteristic assumed for the population. Suppose that the following
seven observations have been drawn from a population: -2, -1, 2, 2, 4, 5, 8 and
that the test statistic is the median. The null hypothesis might be that the data
are a random sample from a population with a zero median. The sample median
is 2. Now how should this sample be transformed so that its median is 0? Both
of the observations coded 2 would have to be recoded. Should both of them be
recoded as 07 Should one of them be recoded as 0 and the other as, say, —1?
Should all of the observations be recoded by subtracting 2? The “correct” trans-
formation is not obvious.

Due to this kind of ambiguity, applications of the sample transformation
method are limited. In contrast, the sampling distribution shift and Normal
approximation methods can be applied almost automatically. When using either
of these latter two methods, there is no need to decide how to adjust a sample so
that it conforms to assumptions made about the population under the null
hypothesis.
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APPENDIX 4B
THE BOOTSTRAP RANDOMIZATION METHOD

The bootstrap randomization method is a hybrid of randomization and the
bootstrap approaches. It could be used in cases where the hypothesis is that the
data are a random sample from a population in which two or more of the vari-
ables are stochastically independent. Mechanically, this method is very similar
to an approximate randomization test. To simplify matters, suppose there are
just two variables. Instead of simply shuffling one of the variables, bootstrap
resampling is conducted for one or both of the variables. If one of the variables
is considered fixed, then bootstrap samples are drawn for the other variable.1?
If both of the variables are considered to be random variables, then bootstrap
samples are drawn for each of the variables independently.

Practically, an approximate randomization test and a bootstrap randomiza-
tion test will usually agree concerning whether their respective null hypotheses
should be rejected. The difference between the two tests is in the interpretation,
which has to do with the null hypotheses the tests address. In the case of the
approximate randomization test, the null hypothesis is that the variables are
independent, which implies that all permutations of one of the variables relative
to the other were equally likely. In the case of the bootstrap randomization test,
the null hypothesis is that the data are a random sample from a population in
which the variables are stochastically independent and that the marginal distri-
butions of the variables in the sample satisfactorily approximate the marginal
distributions of the variables in the population. Thus, the bootstrap randomiza-
tion test might be preferred to the approximate randomization test when the
researcher wants to make a direct inference about a characteristic of a population
(i.e., that variables are independent in the population) based upon a random
sample. 18 Unfortunately, it may be difficult to tell whether the marginal distri-
butions of the variables in the sample satisfactorily approximate the marginal
distributions of the variables in the population without knowing more about the
population than is contained in the sample. Much work needs to be done by
statisticians before this method can be used with confidence without corrobor-
ating evidence.

17 Efron and Gong [1983), Freedman [1981], and Freedman and Peters [1984a, 1984b]
use bootstrap methods to assess regression standard errors and confidence intervals.
Marais [1984] adapts these bootstrap methods to test hypotheses concerning regression
statistics. The “percentile” method used by Marais is an example of the bootstrap
randomization method and it shows some promise in regression settings where the
reliability of conventional parametric tests are suspect.

18 [y the case where the characteristic of the population is known, the researcher may
want to test whether the data were drawn at random from the population.
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A prudent course of action would be to run an approximate randomization
test whenever a bootstrap randomization test is run. As suggested above, the
outcomes of the tests (in terms of rejection or nonrejection of the null hypoth-
esis) will only rarely differ. The approximate randomization test has the advan-
tage that it is always a valid test of the simple hypothesis that all permutations
were equally likely. The bootstrap randomization test is a valid test of the joint
hypothesis that the data are a random sample from a population in which the
variables are stochastically independent and that the marginal distributions of the
variables in the sample satisfactorily approximate the marginal distributions of
the variables in the population. The bootstrap randomization test may not, how-
ever, in any given situation be a reliable test of the simpler hypothesis that the
data are a random sample from a population in which the variables are stochas-
tically independent.



CHAPTER FIVE

Conclusion

In this chapter the three major
computer-intensive methods for
assessing the significance of a test
statistic are reviewed and are con-
trasted with each other and with
conventional parametric methods.
The method that should be used
largely depends on the nature of the
null hypothesis. For example, if a
researcher is interested in testing the
null hypothesis that variables are
unrelated, an approximate randomi-
zation test should be used in prefer-
ence to other computer-intensive
methods and to conventional para-
metric methods.

83



84 Chapter 5 Conclusion

5.1 APPROXIMATE RANDOMIZATION TESTS

Conceptually, approximate randomization tests are the simplest-of all statis-
tical methods. The null hypothesis is that one variable (or set of variables) is
unrelated to another variable (or set of variables). To estimate the probability
distribution of any test statistic under this null hypothesis, you simply shuffle
one variable (or set of variables) relative to the others and recompute the value
of the test statistic. This procedure ensures that the variables are unrelated.

The characteristics of approximate randomization tests are summarized in
Table 5.1.

Table 5.1
Summary of approximate randomization tests

Null Hypothesis

One variable (or set of variables) is unrelated to the other variable(s). Technically,
all permutations of one variable (or set of variables) relative to the other variable(s) were
equally likely; thus, the data are a sample of size one from the set of all possible
permutations.

Procedure

Approximate the distribution of the test statistic under the null hypothesis that the
variables are unrelated by repeatedly shuffling one variable (or set of variables) relative to
the other variable(s) and recomputing the test statistic.

Advantages
« Can be used to assess the significance of any test statistic.
« The data can be drawn from any population.
» The data need not be a random sample.

Disadvantages

« Cannot be formally used to drawn an inference about a population from which a
random sample has been drawn.

+ All permutations may not have been equally likely for reasons that are not of
interest to the researcher. Therefore, the null hypothesis may be rejected for the wrong
reason.

Approximate randomization tests have a number of important advantages
over conventional parametric tests. First, the approximate randomization
method can be used to assess the significance of any test statistic, even those for
which the conventional sampling distribution is not known. Second, the data
can be drawn from any population. In particular, the data need not be a random
sample (indeed, the data can be the population). On the other hand, if your
purpose is to draw an inference about a population from which a random sample
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has been drawn, then a conventional parametric test or another computer-
intensive method may be more appropriate. Nevertheless, since random samples
are, on average, representative of the populations from which they are drawn, if
the null hypothesis is rejected using a randomization test on a random sample, it
is likely that the null hypothesis would be rejected as well if the test were
repeated on the population.

An approximate randomization test is a valid test of the null hypothesis that
all permutations of one variable (or set of variables) relative to the other vari-
able(s) were equally likely. A distinction needs to be drawn, however, between
the null hypothesis you are really interested in testing and the null hypothesis the
test actually addresses. It may be that all permutations of the data were not
equally likely — for reasons that do not interest you. For example, suppose you
would like to test whether corn prices are related to corn production (economists
maintain that prices should increase when production declines and decrease
when production goes up). To test this hypothesis, corn prices might be shuffled
relative to per capita corn production across a number of years. However, corn
prices are likely to drift upward over time due to general price inflation and corn
production per capita can drift due to changes in population or technology over
time. Thus, there is likely to be a correlation between corn prices and corn
production per capita for reasons having little to do with the hypothesis of real
interest to the researcher. In general, caution is advised whenever variables are
shuffled relative to each other in a way that breaks a temporal connection, !

5.2 CONVENTIONAL PARAMETRIC METHODS

The characteristics of conventional parametric methods are summarized in
Table 5.2. Conventional parametric methods for testing hypotheses presume the
data are a random sample from a particular population. For example, in a con-
ventional t test of a mean, it is assumed that the data are a random sample from a
Normal population. Statisticians use mathematical analysis to answer the ques-
tion, “What is the likelihood that the value of the test statistic would have been
as large as x when a random sample is drawn from this population?”” Unfortu-
nately, analytical techniques sometimes are incapable of providing an answer to
that question. In those cases, Monte Carlo simulation is often used to empiri-
cally estimate the sampling distribution of the test statistic.

There are two major drawbacks to relying on conventional parametric
methods. First, you may not know the sampling distribution of the test statistic
you would like to use. Second, while a conventional parametric test is a valid

 This same problem exists with respect to naive application of conventional parametric
tests to time series data as well, and the solutions to the problem are the same. When
dealing with corn prices, for example, it would be wise to deflate nominal comn prices
with a price level index to adjust for general inflation. Diagnostic tests can then be
applied to the data to detect problems such as autocorrelation.
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test of the null hypothesis that the data are a random sample from a particular
population, that may not be the null hypothesis you would really like to test. For

example, you may be interested in whether the mean of the population is zero,

but a conventional t test of the mean also implicitly tests whether the population

is Normal. Therefore, you may reject the null hypothesis for the wrong reason.

Table 5.2
Summary of conventional parametric tests

Null Hypothesis
The data are a random sample from a particular population.

Procedure

Mathematically derive the sampling distribution of the test statistic. If the sampling
distribution has already been derived and tables exist, simply look up the significance
level of the test statistic in a table.

Advantages
+ If the population conforms to the assumptions required to derive the sampling

distribution, no other method can do any better.
* Excellent software is available for testing many statistics.
* Requires much less computer time than computer-intensive methods.

Disadvantages
* The assumptions required to derive the sampling distribution may not be valid.

Therefore, the null hypothesis may be rejected for the wrong reason.
* The exact sampling distribution may not have been derived for the test statistic the
researcher would like to use.

There are some distinct advantages to using conventional parametric
methods. The biggest advantage is that when the assumptions of the conven-
tional parametric test are satisfied, no other method can do any better at assess-
ing the significance of a given test statistic. Additionally, conventional para-
metric tests require much less computer time than computer-intensive methods.
As arule of thumb, computer-intensive methods take on the order of NS times
as long to run as conventional parametric tests, where NS is the number of arti-
ficial samples that are used to estimate the sampling distribution. When data
sets are very large, this can be a very big advantage — particularly since the
validity problems associated with using conventional parametric methods tend to
diminish as the sample size becomes large.
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5.3 MONTE CARLO SAMPLING

The characteristics of the Monte Carlo sampling method are summarized in
Table 5.3. The null hypothesis in a Monte Carlo sampling test is the same as in
a conventional parametric test; the data are a random sample from a particular
population. The sampling distribution of the test statistic is estimated by gener-
ating artificial random samples from a computer model of the null hypothesis
population.

Table 5.3
Summary of Monte Carlo sampling

Null Hypothesis
The data are a random sample from a particular population.

Procedure

Empirically approximate the sampling distribution of the test statistic by drawing
simulated random samples from the null hypothesis population. For each simulated
random sample, compute the test statistic.

Advantages
« Can be used even when the exact sampling distribution of the test statistic has not
been derived. ’

Disadvantages
» The assumptions required to fully specify a population may not be valid.
Therefore, the null hypothesis may be rejected for the wrong reason.

The only advantage of Monte Carlo sampling over conventional parametric
methods is that it can be used even when the sampling distribution of the test
statistic has not been analytically derived.

Like conventional parametric tests, significance levels resulting from Monte
Carlo tests may be misleading. In order to conduct a Monte Carlo test, the
population has to be completely characterized. However, it is usually the case
that only one aspect of the population is really of interest (e.g., its mean). The
null hypothesis may therefore be rejected because the population from which the
random sample was drawn differs from the model of the population used in
Monte Carlo sampling in ways that are substantively uninteresting (e.g., the
population is assumed to be Normal, but isn’t).



88 Chapter 5 Conclusion

5.4 BOOTSTRAP RESAMPLING (DISTRIBUTION SHIFT METHOD)
The characteristics of the bootstrap resampling distribution shift method are
summarized in Table 5.4,

. Table 5.4
Summary of bootstrap resampling (distribution shift method)

Null Hypothesis

The data are a random sample, the mean of the sampling distribution of the test
statistic is a specific value, and the shape of the sampling distribution of the test statistic
is well approximated by the bootstrap sampling distribution.

ocedur
Estimate the shape of the sampling distribution by repeatedly sampling (with
replacement) from the sample itself.

Advantages :
+ Can be used when the sampling distribution of the test statistic has not been

derived. _

* The null hypothesis population does not have to be defined (the sample serves as a
proxy for the population).

* The procedure is entirely automatic once a test statistic has been specified.

Disadvantages

* The assumption that the shape of the sampling distribution is well approximated by
the bootstrap sampling distribution may not be valid. Therefore, the null hypothesis may
be rejected for the wrong reason.

When the distribution shift method is used to assess significance, the null
hypothesis is that the data are a random sample, the mean of the sampling distri-
bution of the test statistic is a specific value, and the shape of the sampling
distribution of the test statistic is well approximated by the shape of the boot-
strap sampling distribution. The test is carried out by sampling with replace-
ment from the sample and recomputing the value of the test statistic for the
bootstrapped sample. This procedure is repeated many times, creating an esti-
mate of the bootstrap sampling distribution. It is assumed that the shape of this
bootstrap sampling distribution is the same as the shape of the sampling distri-
bution when drawing samples directly from the population; the distributions
differ only with respect to their means.
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The significance level is estimated by centering the bootstrap sampling
distribution over the hypothesized expected value of the underlying sampling
distribution and computing the mass under the distribution to the right of the
actual value of the test statistic for the real sample.

Despite the somewhat lengthy description, this method is extremely easy to
use. All you have to do is define the test statistic and decide what its expected
value should be under the null hypothesis — everything else is entirely automatic.

The advantage of this method over Monte Carlo sampling is that it is unnec-
essary to define the null hypothesis population. Essentially, the sample stands in
for the population in the test. The advantage of this method over conventional
parametric methods is that a significance level can be estimated for any test
statistic — even when the exact sampling distribution of the test statistic has not
been derived.

The principal disadvantage of this method is that the null hypothesis may be
rejected because the shape of the sampling distribution is not well-approximated
by the shape of the bootstrap sampling distribution rather than because the
expected value of the test statistic differs from the value that is hypothesized.
Unfortunately, it is difficult to tell whether the shape assumption is reasonable or
not by just looking at the sample. And if more is known about the population
than is contained in the sample, that information should be used and not
discarded as it would be in a routine bootstrap test.

On occasion, bootstrap tests have been used as a check on the validity of a
conventional parametric test when it is known that assumptions underlying the
conventional parametric test are violated. Unfortunately, it appears that boot-
strap tests and conventional parametric tests can fail under similar conditions, so
this use of bootstrap tests is of questionable utility. Bootstrap tests are most
useful in situations where a conventional parametric test does not exist (i.e., the
sampling distribution of the test statistic isn’t known).

5.5 BOOTSTRAP RESAMPLING (NORMAL APPROXIMATION METHOD)

The characteristics of the bootstrap resampling Normal approximation
method are summarized in Table 5.5. The remarks concerning the distribution
shift method in the previous section apply here, except that instead of assuming
that the shape of the bootstrap sampling distribution approximates the shape of
the underlying sampling distribution, it is assumed that the variance of the
bootstrap sampling distribution approximates the variance of the underlying
sampling distribution which in turn is assumed to be Normal. As before, this
critical assumption may or may not be valid, and it is difficult to tell whether it
is valid without knowing more about the population than just the information
contained in the sample.
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Table 5.5
Summary of bootstrap resampling (Normal approximation method)

Nuli Hypothesis

The data are a random sample from a Normal population, the mean of the sampling
distribution of the test statistic is a specific value, and the variance of the sampling
distribution is well approximated by the variance of the bootstrap sampling distribution.

Procedure
Estimate the variance of the sampling distribution by sampling (with replacement)

from the sample itself,

Advantages »
* Can be used when the sampling distribution of the test statistic has not been

derived.

» The null hypothesis population does not have to be defined (the sample serves as a
proxy for the population),

» The procedure is entirely automatic once a test statistic has been specified.

Disadvantages
* The assumption that the sampling distribution is Normal and that its standard

deviation is well approximated by the standard deviation of the bootstrap sampling
distribution may not be valid. Therefore, the null hypothesis may be rejected for the
wrong reason.

5.6 SELECTING A METHOD FOR ASSESSING SIGNIFICANCE

Once you have selected a test statistic, how should its significance be
assessed? Before addressing this question, it should be acknowledged that
statisticians might object to separating the selection of a test statistic from the
question of how its significance will be assessed. In theory the test statistic and
method of assessing its significance should be selected simultaneously to
maximize the power of the test. Apart from the difficulty of doing this even
under ideal conditions, there is the added complication that power is not the only
consideration. The different methods of assessing significance have different
likelihoods of falsely rejecting the null hypothesis in which the researcher is
really interested. That is, some methods are more reliable than others. I have
tried to informally balance issues of reliability and power in the discussion that
follows.

Each of the methods discussed above for assessing the significance of a test
statistic provides a valid test of a null hypothesis. However, the null hypothesis
that is actually tested differs from one method to another. You should be very
careful to select from among the methods that could be used, the one that does
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the best job of testing the null hypothesis you would really like to see tested.
Selection of a method for assessing the significance of a test statistic implicitly
involves the selection of a null hypothesis.

Advice concerning selection of a method is presented in condensed form in
Figure 5.1. Throughout this section, I assume that a computer-intensive solution
is feasible for your problem. If your data set is extraordinarily large or your test
statistic is extraordinarily complicated, calculation of the test statistic may
require inordinate amounts of computer time. In that case, a computer-intensive
approach may not be practical. However, in most fields, this would be quite

unusual.
What is the nature
of the null hypothesis?
Variables Data are a random
are unrelated sample from a
population
Approximate Is the population completely
randomization specified under the null hypothesis?
YES
( Has the sampling distribution of the test
Specify the mean statistic been derived for this population?
of the sampling
distribution NO YES
Bootstrap Esti'ma‘te tl?e sam'pling Conventional
methods distribution using parametric test
Monte Carlo sampling

Figure 5.1 Selecting a method for assessing significance
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The following discussion should also be tempered by two considerations.
First, it is often at present much easier to use conventional methods than
computer-intensive methods simply because computer-intensive methods have
not yet been incorporated into statistical software packages. Second, it will
usually take more effort to communicate the results of computer-intensive test to
others, particularly those who have been trained in conventional parametric
techniques, since readers are likely to be unfamiliar with the techniques. I don’t
expect either of these drawbacks to persist for long.

After the test statistic has been selected, the first step is to decide the nature
of the null hypothesis you want to test. There are really only two kinds of null
hypotheses from which to choose. Either the null hypothesis is that variables are
unrelated to each other or the null hypothesis is that the data are a random
sample from a population. If you really would like to test whether one variable
(or set of variables) is unrelated to another variable (or set of variables), then the
approximate randomization method should be used. If you really would like to
test whether the data are a random sample from a population, then one of the
other methods should be used.

If you want to test whether the data are a random sample from a population,
then the next question is whether you want to specify the population in enough
detail that the sampling distribution of the test statistic can be estimated by
drawing samples from a computer model of the population. If you don’t mind
invoking the additional assumptions required to build a complete model of a
population, then you can proceed with Monte Carlo sampling. Preferably, if the
sampling distribution of the test statistic has been derived for that population,
you can consult a statistics text for the significance level of the test statistic. Or,
you could try to analytically derive the sampling distribution of the test statistic.

If, on the other hand, you would prefer not to assume that the population
distribution is Normal or whatever, you could use a bootstrap method to estimate
the significance level of the test statistic. To do this, the only additional step
required is to specify the mean of the sampling distribution under the null hypo-
thesis. However, since bootstrap methods are rather speculative at this point, I
would suggest that you reevaluate the nature of the null hypothesis you would
like to test. If, after all, a test of whether variables are unrelated would be
appropriate, you would usually be better off using the approximate randomi-
zation method to assess significance than to use bootstrap methods.
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