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This chapter deals with three interrelated topics: (a) applications of
multidimensional scaling to social science problems, (b) problems in appli-
cations of multidimensional scaling, and (c) problems in application of
multidimensional scaling to social science problems.

Multidimensional scaling refers here to the analysis of judged similarity
data (individual or aggregate) by techniques that attempt to represent
these data by a spatial configuration. Respondents’ judgments of similarity
or dissimilarity between pairs of items can be obtained by (a) having each i
respondent rate or rank all pairs of items by degree of intrapair similarity, i ;
(b) having each respondent rate or rank some pairs and aggregating these b
individual data into an overall set which yields & rating or ranking of all i :
pairs, or (c) having the respondents sort items into groups on the basis of _
similarity and aggregating these data into an overall similarity measure for e
the group. The respondent is not told on what basis to judge similarity, for ' !
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Fi16. 1. Spatial representation of judged similarity of sandwiches.

the judgments are elicited in order to determine this basis, These indi-
vidual or aggregate data on judged similarities are then subjected to a
kind of analysis which uses a metric space representation in which the re-
verse rank ordering of distances between items corresponds to the rank
ordering of similarities.

There are many other kinds of data of interest to social scientists in
addition to similarity data as well as many other possible ways to analyze
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TABLE 1

CoorpINATE VALUES FOR Sanpwica Data

Dimensiona
No. X Y Z Sandwich
1 13.21 7.38 2.25 Chicken
2 1.85 16.10 10.54 Cheddar cheese
3 0 4.25 14.05 Peanut butter
4 4.30 0.70 17.66 Jelly
5 9.33 1.71 2.52 Egg salad
8 18.42 9.55 3.17 Ham
7 3.94 2.27 17.78 Strawberry Jam
8 7.38 4.45 18.42 Apple butter
9 16.57 15.58 14.89 Weiners
10 9.93 15.76 15.41 Pizza
11 10.97 1.76 2.41 Tuna fish salad
12 13.53 14.65 1.61 Roast Beef
13 6.20 11.97 1.56 Bacon
14 14 .30 18.98 6.73 Meat Loaf
15 18.75 15.81 13.16 Sausage
16 14.56 20.31 11.62 Hamburger
17 8.96 2.27 12.73 Marshmallow Guff
18 10.52 1.23 15.83 Honey
19 20.04 11.25 7.79 Baloney
20 19.99 9.60 11.78 Spatn
21 1.18 9.37 6,12 Peanut butter and bacon
22 15.75 13.36 3.00 Corned beef
23 3.88 18.02 8.67 Cheese
24 13.52 12.80 7.78 Regional long sandwich
235 0.06 10.87 13.75 Cheese spread
26 7.99 8.69 10.86 Hamburger and cheese
27 9.92 8.47 19.10 Toastems
28 3.44 5.01 13.77 Peanut butter and jelly

similarity data beside multidimensional scaling analysis. Here consider-
ations will be given to other kinds of data well suited to multidimensional
scaling analysis and also to some alternative modes of analysis of similarity
data which may increase the usefulness of these data for predicting other

forms of behavior.

For over ten years most of the author's research and intellectual effort
has been spent pursuing the implications of several banal propositions:

1. An individual will behave similarly toward things which seem similar

to him.

S e

)

T




4

8
]
|
1
i
|
H

214 Volney J. Steffire

2. If a new item is introduced into an individual’s culture, the individual
will behave toward it in a manner similar to the way he behaves toward
familiar items that he sees as similar to the new item.

3. The close relationship between what is psychologically similar for the
individual and which things are behaved towards similarly by that indi-
vidual holds across individuals and across cultures despite the wide vari-
ation between individuals and cultures as to which objects are seen as
similar and in how the objects or situations are behaved towards (Stefflre,
1965, 1968, ms., o).

One way of trying to determine what an individual sees as similar to
what is to ask him. By aggregating these data, one may try to determine

\\ what is similar to what for members of a particular culture. Figure 1 and

Table 1 provide an example of aggregate judged similarity data on different
kinds of sandwiches. For this type of study, 50 respondents are asked which
is similar to what. Their data are aggregated, normalized, and transformed
into a physical model using multidimensional scaling (I{ruskal, 1964a,b}.
This kind of data stabilizes with fairly small samples of respondents
(N = 30-60). To test reliabilities, the respondents are assigned numbers
arbitrarily and divided into two groups. When dealing with a sample of 30,
ttem-item similarity is calculated separately for the 25 odd-numbered and
the 25 even-numbered respondents. For the last five sets of similarity data
we collected, the split-half reliabilities, i.e., the correlations between the
even-numbered and the odd-numbered groups, were .75, .60, .85, .80, and
777. Following the Spearman-Brown formula (e.g., see Gulliksen, 1950,
Ch. 6), these figures suggest that the reliability of the data for the total
groups ranged from .75 to .92.

Another way to try to learn which things are similar for an individual
is to observe his behavior. Several interesting forms of aggregated data
can be obtained from routine behavior patterns. These can be taken as
indexes of the amount of behavioral similarity which various pairs of
items elicit from members of the particular culture studied.

We have done a fair amount of work over the last few years on market
research and new product development because of the availability of large
scale data on patterns of individual behavior in this area and because of
the opportunity for conducting large scale natural experiments through
the development and introduction of new consumer products. In this con-
text, as in many marketlike situations (see Steffire, 1965), patterns of
similarity can underly patterns of substitution and competition, i.e., objects
substitute for each other or compete with each other in a single choice
situation to the extent that they are seen as similar.
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es of indexes for product-product substitution have been

Several typ e
and substi-

developed: Ttem-by-use matrices, patterns of preference data,
tution patierns.

ITEMS WITH THE SAME UsEs

or one individual. Tables 3 through 7

Table 2 shows item-by-use data f
show the stages in the rearrangement of this matrix into clumps according
to distributional similarity. Table 8 shows a 34-person aggregate data
matrix rearranged into clumps according to digtributional similarity.
Table 2 is the data matrix for an individual in which each row is a kind
of medicine and each column is a belief-frame about when to use medicines.
The informant gubstituted each medicine into each frame, “You take
(kind of medicine) when you (condition of use),” and indicated acceptability
of the sentence thus formed by a , unacceptability by & blank (equivalent
to a zero). For example, “You take Bufferin when you have a stuffy nose”

was judged unacceptable by the informant and so the position row 1,

column 2, is blank.
caleulation of the similarity of each

Table 3 shows the results of the
row to every other row in terms of the extent to which they exhibit the

same patterns of ones. This procedure measures the extent to which two
belief-frames allow the same form to be placed in them resulting in ac-
ceptable statements. If r; is the row vector of 0’s and 1's from the ith row,

then the similarity between rows i and j is as follows:

raf & 1

8i =
P el i

y transposing the row vector 7).

(where 7’ is the column vector obtained b
f Table 3 rearranged so that the

Table 4 shows the row-row similarity o

rows similar to each other are placed near each other.

Table 5 shows the results of the calculation of the similarity of each
column to every other column in terms of the distributional similarity of
he columns. If c; is the column vector of

the belief-frames that label t
geros and ones for the ith column, then the similarity between columns

i and j is as follows:

_ c.-’c,- -+ c,'c; '
¢iei + ci'ej
Table 6 shows the column-column similarity of Table 5 rearranged 50
that columns similar to each other are near each other.
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33 Anytime I wasa thiraty
41 When [ want something sweet
03 For o low calorie funch

18 For breakfast

32 With pie

12 In the morning
08 For dessert

43 Coflca break

For o quick lunch

21 For very apecial occasions
25 Three or four times a day

13  As an appetizer
40 With cheesa

15 With soup

48 After a party
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Milk
Raisina
Jello
Canned fruit
Leftovers
A pickle
A bowl of soup
Cottage cheese
Hard boiled eggn
Freah fruit
Applea
Candy bars
Ice cream
CDgnutn .
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Paostries
A piece of eake
Cooki

=]
Hard candy
Coca cola
Bausage sticks
Cheese fiavored popcorn
Carmel corn
Fiddlc-Faddles (like Cracker
Jacka}

Po%com

Nabiseo Snacka—chipaters,
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Fritos

Bugles

Potato chips

Pretzels

Nuta

Peanuta

Mesat Havored snacks
Daisys

Shoe string potatoes

Cheesa and crackers
A meaty snack

Cheesa
Cold eute—salami, bologna
Bandwich
A hamburger sandwich
Hot dogs |
Potnato chips and sour cream
Pizza
Fretich Iriea
e e er and jelly
eanut butter an
sandwich
Rolls
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Instant breakfast
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s Odd-numbered respondenta versus even-oumbered respondentsa (split-half relinbility .B7).
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TABLE 8 (Continued)

10 For kida

34 After achool

19 An asnack
2g Little get Logethers

20 In belween meala
24 Ip the evenings

of  Whatching T.V.
056 Just by itaell

37 At parties

04 To nibble on

07 With a coke

02 While drinking beer

11 To go along with a drink
41 Atabar

45 With cocktails

27 With dips
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M
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Jello

Canned fruit
Le

Carmel corn
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Cracker Jacks)

Po%curn
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chipaters, shapes
tos
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Potato chips

Pretzels
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Ment flavored snacks
Daisys

50 Bhoe stri:ﬁ potatoes
Cheese and erackers
A mepty B

Ch
Cold cute—salami,
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Sandwich
A hamburger sandwich
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nﬁ’udwieh
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Table 7 shows the original data matrix for one individual rearranged
into clusters (that are based on the separate row-row and column-column
calculations described above) such that both rows which are similar to
each other and columns which are similar to each other are near each other.

Table 8 is similar to Table 7 but displays group data. It shows an aggre-
gate data matrix in which each row is a kind of snack and each column is
a belief-frame about when to eat snacks.

If we split the arbitrarily numbered respondents who form the group
for & given aggregate data matrix into an even-numbered half and an odd-
numbered half, the split-half reliabilities for our last five studies are .77,
91, .85, .93, and .88. Following the Spearman-Brown formula (e.g., see
Gulliksen, 1950, Ch. 6), these figures suggest that reliability of the data
from these item-by-use matrices ranged from 83 to .97 for the total groups.
Steffire, Reich, and McClaran (1971) presented some interindividual corre-
lations for this type of data in a number of languages. TFor normal re-
spondents with a 50 X 50 matrix, a typical interindividual correlation
was .70; with a 25 X 25 matrix, the median of 423 correlations was .59.
Schizophrenics or respondents under the influence of drugs exhibited lower
interindividual correlations.

IrEMs MARKED X BY THE SAME INDIVIDUALS (X = Likep, RESPECTED,
Fearep, Etc.)

Figure 2 shows a physical model of trips liked by the same individuals
(N = 200) from a cQL:elati.an_mntrix based on preference data. The relia-
bility of correlation matrices of this size and type run around .75 if the
odd-numbered respondents’ matrix is correlated with that for the even-
numbered respondents.

PATTERNS OF SUBSTITUTION FROM PanerL Purcrasg Data
(WHERE AVAILABLE)

With this type of data, we can see the patterns of brand-switching or
the shifts in the individual family purchase bundles from one time period
to the next (Buzzell, 1964, pp. 217 ff. reviews briefly some of the early
variations of switching models from Markov to Casbah).

"~ We have found it useful to work with aggregate judged similarity data

(N = 50) and aggregate data (N = 200-10,000) on substitution among
items. The data relating judged similarity to item—-item substitution is

e G i PP B,

gl e
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Fio. 2. Spatial representation of trip preferences.

fairly consistent. Figure 3 ghows some 1961 data on judged similarity and
brand switching (N = 3000) for 12 brands of cigarettes and Figure 4
ghows data on judged gimilarity and substitution for toilet soap. The
substitution index for toilet soap was obtained by combining product—
product gimilarity-in-use rankings from data like those in Figure 2 with
product—product preference correlations like those in Figure 3. Products
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are treated as more substitutable and competitive if they (a) are seen as
appropriate for the same uses, and (b) are liked by the same individuals.
The Brown, Cardozo, Cunningham, Salmon, and Sultan report (1968, pp.
439 ff., 461-463) contains a description of one of our other early projects
and presents in detail some of our data on judged similarity and brand-
brand substitution in the coffee market. For this project, several years
panel-purchase diaries for estimating patterns of substitution and compe-
tition were available.

Judged similarity in the above examples is a useful indicator of larger
scale patterns of routine behavior in & culture and a spatial representation
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of judged similarity data offers a succinet summary of complex patterns
of behavioral similarity. In this manner, we have studied cross-culturally
perception of and behavior towards approximately 20 different sectors of
the world of objects, ranging from cofice to Peace Corps volunteers; and
we have found in support of the first proposition stated above that the
relation between judged similarity and similarity in routine behavior holds
in varying degrees in all these sectors. The lowest correlation was .45,
the highest was .83, and the median, .70.

The second proposition states that a new item introduced into o culture
will be behaved towards in & manner similar to the behavior toward
familiar items that are seen by members of the culture as similar to the
new item. It provides us with an experimental test of our understanding
of the features that underly the descriptive regularities mentioned above
and it is also useful for a variety of practical applications.

In order to discuss the propositions further, it is relevant to differentiate
items and descriptions. My own bias in approaching the question of why
an individual in a culture sees certain things as similar and different and
why he sees a new thing as exhibiting a particular pattern of similarity to
familiar things is to view the answer to this question as having two sep-
arable levels.

(1) Items. The Xs see this new item as similar to other things because
of the way they encode it (describe it to themselves).

(2) Descriptions. The Xsencode this new thing (describe it to themselves)
in a particular manner because it has a certain set of physical character-
istics and configurations over time, was presented in such and such a way,
ete.

On one level, then, the inquiry into why a particular item fits where it
does in a similarity structure and elicits a particular pattern of behavior,
or the attempt to design a new item which when introduced into a culture
will be located in a particular position in the similarity structure and there-
fore will elicit certain behavior, is the search for a description that will
perform as the item has been observed to or is desired to perform.

Figure 5 and Tables 9 and 10 show examples of some aspects of the
search for 2 description which performs according to prediction. We sur-
mised that in Quechua (an Indian language), Peace Corp workers might
be described as yanapakuggringokuna [yanapakughuna is a reciprocal work
group, that is, people who work together to help each other, and the
meaning of gringe is obvious (Stefilre and McClaran, 1971)] and then
tested the fit of this description for Cuzquefios by measuring the similarity
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of yanapakuggringokunae to volunlarios del cuerpo de paz. Similarity was
measured by (a) a role by behavior matrix, (b) a judged similarity matrix,
and then (c) by comparing the location of these roles in the physical model
of a correlation matrix based on having 500 Cuzquefios rank a group of 31
roles according to how much they thought each role was contributing to
improvement in the quality of life in Cuzeo.

The results of the comparison of yanapakuggringokuna to voluniarios
del cuerpo de paz were as follows: (a) it was second most similar in expected

Fia. 5. Spatial representation of Peace Corps versus other types of people: A spatial

model of the correlation matrix.
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TABLE 9

Ruanking oF Peace Corrs VOLUNTEERS WITH OtaER TYPEs OF PEOPLE

Mogt similar to peace corps volunteers

1 Testigoa de Jehova Jehova’s Witnesses
2 Gringos Gringos
3 Soldados Draftees
4 Yanapakuggringokuno Gringos who mutually help
5 Turistas Tourists
6 Guardias Policemen
7 Padres Priests
8 Ingenicros Engineers
9 Los que ayudan Those who help
10 Q'arkuna Young men city slickers
11 Maestros ’ Teachers
12  Yanapakugkuna Those who help cach other
13 Abogados Lawycrs
14 Estudiantes Students
15 Adincrados Wealthy people
16 Enfermeras Nurses
17 Hacendados Landowners
18 Comerciantes Merchants

19 Médicos Dectors
20 Licenciadukuna Army ‘graduates’
21 Personerokuna Village representatives

22 Campesines Pensants

23 Ladrones Thieves

24 Parteras Midwives

25 Indigenas Indians

26 Cholos Creoles, natives

27 Watugkuna Diviners

28 Mestizoy Mestizos

20 Obreros Laborers

30 Placeras Female plaza vendors

Least similar to peace corps volunteers

behavior of the 53 roles compared in the role by behavior matrix, (b) it
was the most similar of the 27 roles compared in the judged similarity
work, and (c) it had the fourth highest correlation of the 31 roles ranked
in terms of contributing improvement to life in Cuzco. Table 9 shows the
ranking of the roles by their correlation with voluniarios del cuerpo de paz.
and Figure 5 shows their positioning in a spatial model of the correlation
matrix. (Table 10 shows the coordinates for the model.)

From these results we can surmise that the components concatenated
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by infixing gringo in yanapa
positions like voluntarios del ¢
“huilt” some people seen by
yanapakuggringokuna they wc
this description.

Peace (
Dimension
No. X Y Z
1 1.05 5.98 ..
2 19.22 15.67 6.1
3 10.35 2.97 13.
4 13.45 2.13 10.
5 8.099 5.68 18.
L] 13.87 481 3.
7 0 6.53 9.
8 9.10 8.54 20.
9 3.61 16.46 13.

10 12.94 7.01 1.
11 13.73 10.74 20
12 11.42 20.4 13.
13 47 12.20 9
14 4.22 6.84

15 8.74 14.49 2

18 11.50 7.63 19
17 17.49 18.10 10
18 6.97 15.79 4
19 18.96 2.93 9
20 10.57 5.40 1
21 19.41 16.17 11
22 15.44 10.82 12
23 3.51 2.13 10
24 4.21 15.70 12
25 10.70 6.74 1

26 16.70 15.60 14
27 13.78 17.73 1¢
28 1.47 15.34 1«
20 20.48 8.16 i
30 5.53 0.41 I
31 8.80 17.14 :

,
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by infixing gringo in yanepakugkuna make a combination that roughly
positions like voluntarios del cuerpo de paz. We can also surmise that if we

rwER Trees oF PrOPLE “huilt” some people seen by our respondents as matching the descripiion
yanapakuggringokuna they would position and perform approximately like
this description.
Witnesses TABLE 10
Peace Corps Dara CoORDINATES
o mutually help X
Dimension
! No. X Y Z People
3
wo help 1 1.05 5.98 §.42 Turistas Tourists
£n city slickers 2 19.22 15.67 6.68 DMédicos Doctora
3 10.35 2.97 13.16 Ingenicros Engineers
10 help each other 4 13.45 2.13 10.93 Testigos de Jehova Jehova's Witnesses
5 8.99 5.68 18.36 Obreres Laborers
6 13.87 4.81 3.50 Guardiaa Policeman
people 7 0 6.53 9.45 Campesinos Peasanta
8 9.10 8.84 20.51 Ladrones Thieves
1678 9 3.61 16.46 13.86 Comerciantes Merchants
its 10 12.94 7.1 1.07 Soldados Draftecs
11 13.73 10,74 20.01 Watugkuna Diviners
raduates’ 12 11.42  20.54 13.66 Adinerados Wealthy people
-gpresentatives 13 .47 12.20 9.58 Gringoa Gringos
3 14 4.22 6.84 23 Voluntarioa del cuerpo  Peace Corps
de paz
e3 15 8.74 14.49 2.32 Yanapakugkuna Those who help each
other
natives 18 11.50 7.683 19.25 Abogados Lawyers
a 17 17.49 18.10 10.30 Enfermeras Nurses
] 1 18 6.97 15.79 4.63 Mestizos Mestizos
| [ 19 18.96 2.93 .92 Padres Priests
plaza vendors l 20 10.57 5.40 1.86 Licenciadukuna Army ‘graduates’
| 21 19.41 16.17 11.22 Parteras Midwives
| 22 15.44 10.82 12.81 Q'arkuna Young men city slickers
| 23 3.51 2.13 10.66 Indigenas Indians
| 24 4.21 15.70  12.55 Personerokuna Village representatives
e by behavior matrix, (b} it | 25 10.70 6.74 1.34 Yanapakuggringokuna Gringos who moutually
oI jUdgEd similarity ‘ 26 18.70 15.60 14.48 Estudiantes Sthzlpla
ot . 5. . studian uden
dation of t},}e 311 rg‘? rm}iﬁd | 27 1378 17.73  14.82 Hatendados Landowners
in Cuzco. Table 9 shows the ! 28 1.47 1534 1477 Placerss Female plaza vendors
voluntarios del cuerpo de paz. 29  20.48  8.16  10.79 Macstros Teachers
atial model of the correlation 30 5.53 0.41 12.29 Choles Creoles, natives
the model.) 3 8.80 17.14 2.27 Los que ayudan Those who help

he components concatenated
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TABLE 11

Coxrarison oF (1) Raring ofF Prooyer (A NEW CoFFEE) ON
DescrIPTIVE ScaLg, AND (2) CORRELATION OF PREFERENCE FOR
+uE PRopUCT WiTH PREFERENCE FOR [DESCRIPTION

(2} Preference

{1) Ratings correlations

Cofiee (N = 100) (N = 600)
(1) Light 64.00 @ +.07M
(2) Clean 61.00 (3) +-.062
(3) Friendly clean 60.50 (4) +.052
(4) Friendly 57.66 (1) +.088
(5) Mild 57.66 (5) +.049
(6) Bright Aavorful 56.16 (7 —.025
(7) Lively 52.66 {6} +.011
(8) Strong 46.68 (8) —.049

p = .80(p < .05).

If, however, we wish to move to a more basic level of analysis, our
problem becomes one of actually creating the thing that matches the
description and therefore elicits the behavior desired.

One example of this problem of translating descriptions into things can
be found in some early work we did several years ago on coffee. The manu-
facturer wished to add another brand of coffee to increase his corporate
share of the market in a region where it was low and, particularly, to do
so at the expense of two major competitors. We found a description—or
rather a set of descriptions—of a coffee which should serve this purpose,
and then we were faced with the problem of building a coffee (by varying
bean selection and roasting processes) to fit these deseriptions.

The process used to evolve such a coffee was rather complicated but
can be summarized as systematically testing the fit of varied stimuli
against description and preference until one combination has been selected
that fits the description better than any competitive product. The column
entitled “Ratings” in Table 11 shows the fit of the product to a set of eight
descriptions.

The preference correlations column in Table 11 shows the correlation
between preference for this product and preference for each of these
descriptions in a 600-person national. sample. Figure 6 shows a spatial
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(2) Preference
\ZB correlations
0) (N = 600)

(2) +.071
(3) +.082
(4) +.052
(1) +.088
(5) +.049
(7) —.025
(6) +.011
- (8) —.049
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F1q. 6. Spatial representation of preference patterns for brands of coffee and coffee
characteristics.

representation of the patterns of preference for this new blend of coffee
in the national sample. Brands of coffee and coffee characteristics near
each other are those liked by the same people.

What happened in this research was quite straightforward (a) a descrip-
tion was found that performed as the manufacturer desired, (b) a product
was built that (i) was seen by consumers as matching the description and
(ii) was liked in the large-scale test by the people who liked the descriptions
it was built to match.

The client then decided to put the product in another part of the country
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TABLE 12

CoMPARISON PREDICTED AND OBTAINED PERCENTAGE (SHARE)
or Marggtr 1N Test Marker ror NEw CoFFEE

Predicted 7 Obtained %
1 Share 4. 5.1
2 Busginesa {rom:
brand M a8. 36.35
brand W 11. 2.3
brand C 8. 10.5
brand B 5.5 5.
brand A 5.5 9.6
brand L 4 4.1
brand N 4 3.

than had been its original target.! We tested its description in that new
region and gave the client our guess as to its performance. Table 12 com-
pares this prediction with what in fact happened during the product’s
first 38 weeks in test market (combining panel data adjusted for warehouse
withdrawals with a telephone survey).

Since the first project of building a new coffee, we have done three others
of the same type. At present we also work to evolve advertising, packaging,
etc., all selected to fit a particular description whose performance in the
earlier part of the research has been as the manufacturer desired.

We also have five experimental cases in which we (a) found out how
people described a product under development (four cases) or just intro-
duced it into a test market (one case), then (b) tested the product’s descrip-
tion in a 1500-person sample, and finally (c) obtained data on the product’s
performance in the regional or national market in which we had tested
its description. Figure 7 shows the predictions of the performance for the
five different products and their actual performance in the market. In
four of the five cases, the predictions were within +30% of the volume
obtained by the product.

The aim of this digression has been to show one use to which the fit
between judged similarity and large scale patterns of routine behavior,
on the one hand, and the performance of descriptions and the things that

! This project was written by our client as a Harvard Business School Case M268,
19067 and reprinted in Brown e al., 1968 as Ch. 19, Pp. 439-4G0. My manuscript, New
Producls and New Enterprises: An Ezperiment in Applied Social Science, (Steffire, ms.,b)
describes some problems in applied research of this type.
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match them, on the other, can be put; and to show the heuristic value of
spatial models both in representing these structures and in determining
which features lead items to be located as they are in the structures.
Though most work of this kind that has been done to date has been in
marketing, the general processes are applicable to development problems,
political campaigns, ete. (e.g., Mauser, this volume).

In the work described above, the modes of representation used assume
a Euclidean metric space as representing the aggregate similarity structure
and the aggregate patterns of similarity in behavior.

While the assumption of a metric space? underlying these struetures is
useful in some respects, in other respects it is misleading. The major
problem in representing aggregate-aggregate data (i.e., similarity judg-
ments aggregated across individuals and across responses, using cither
patterns of behavior or choice measures as surrogates for patterns of be-
havior) by a metric space has to do with the relationship between features
and preferences.

The present author is inclined to believe that in using an appropriate
distance measure for psychological similarity, the triangle inequality would
be violated fairly frequently. It is of course possible to use distance meas-
ures which force this assumption never to be violated, e.g., numbers
ranging from .5 to 1 {J. Boyd, personal communication).

This violation oceurs in two ways (a) some items (things or verbal
descriptions) reside in two disjoint spaces simultaneously, and (b) three-

30

il
(1
i

g

Fia. 7. Comparison of performance
of product descriptions and new prod-
ucts in Market for five different
products,

OBSERVED SHARE OF MARKET
=] i

w
®

5 0 1% 220 2 a0
PREDICTED FROM PERFORMANCE OF DESCRIFTION

2 A metric space is commonly defined aa one in which three asgumptions are met
(8) Apd = Oifandonlyif A = A, (b) ApB = Bpd (symmetry), (c) ApB + BoC > ApC
(the triangle inequality).
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dimensional representations of disparate sets of complex natural stimuli
force a common space and understate dimensionality enough to approxi-
mate (a) above.

A simple example of (a) above is found in words with multiple meanings,
e.g., light contrasts with dark in one sense and with heavy in another. This
example may seem irrelevant; however, further examination shows that
it is indeed pertinent. Multiple meanings in language can range from
homonyms (e.g., different, unrelated words sounding the same, such as
board and bored) to multiple meanings of the same word (e.g., various
genses of the same word such as “not all men are men’ or slight shifts in
meaning of a word in a new context such as ‘‘the atomie submarine
Nautilus”). The degree of interrelatedness of pairs of appearances of the
same form is essentially a continuous dimension. Light in the context dark
contrasts with one set of terms dark and can be defined semantically as the
intersection of one set of features, while in its other use, it contrasts with
and is defined in terms of another set of features.

The form itself when presented, for example, 8s o free association stimu-
lus, is responded to out of context in both ways by respondents; and thus
as an object in a similarity structure, it resides jointly in two spaces. Its
contrasts dark and heavy cach reside in one of these spaces. A synonym
for light in one space would be well flluminated and in the other not weighty
and clearly these two phrases are not synonymous.

A physical object may exhibit the same kind of multiple meaning. As
a bowl an object fits in one space, as a chalice the same object fits in another,

The argument here is not just that individuals differ in the frame of
reference they impute to the same object, but that the same individual
will differ in the space treated as relevant to a particular object from
context to context and that individual differences may only reflect differing
salience in contexts.

The examples chosen here are extreme and confusion could only be
avoided in such cases by subscripts—light,, lights, or things, thinge—but
the phenomenon is continuous and ubiquitous. A and B may be similar for
one reason, B and C similar for another, and A and C share nothing. I
think of this as the “you can’t get there from here” phenomenon in which
the triangle inequality appears to be violated (e.g., James, 1890, p. 578).
Bright is similar to light, and nol weighty is similar to light, but bright and
not weighty share litile.

By attempting to jam the similarities into a common space in a metric
space analysis and, further, by reducing the complexity of the space to
a workable number of dimensions, problems appear in the heuristic value of
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the spatial representation as a help in determining the features underlying
item placement.

As soon as coordinates are specified and a physical model built, the
question “What does up mean?” emerges. One answer is “Up means the
things that are high.” Another iz “Up is a synesthetic dimension including
both light in weight and bright in illumination.” Or, one we prefer is
“There are no dimensions, just labeled regions—up on one end of the space
may mean something very different from up on the other—and to test
your understanding of how to go where, build new things and see if they
go where you expect.” Alternative interpretations are not to be resolved
by analysis but by experimentation.

A second assumption of the current work on metric space which makes
the author nervous is that location uniquely determines preference—not
just which people like a thing more, but also how many people like it.
Several joint models (Carroll, this volume; Carroll & Chang, 1964, 1967,
1970; Coombs, 1964; Doehlert, 1968; Doehlert & Hoerl, 1967) have
been suggested in which it is inferred not only where items are located, but
also where each individual's ideal point resides in the space.

While our own work in this area has been quite crude, we are at present
as pessimistic about the prospects of an algorithm of this type as we are
about using the spatial coordinates of a metric representation as a formula
for constructing new objects. What we have found fairly frequently is that
two new items which are quite near each other in free judged similarity
or behavioral similarity may be differentially preferred.

An example may illustrate the possibility of the lack of correspondence
between position and preference. If we present twelve pictures, ten of
different people and two prints of the same dog photo to be judged on
similarity, the two dog pictures will probably turn out to be quite similar.
If we look at preference data both pictures will probably tend to be liked
by the same individuals. If one is a good print, however, and the other
not so good, their absolute levels of preference may differ rather more
than their similarity in location would indicate. Another way to say this
is that judged similarity may predict correlations betiween the preferences
for items better than the cross-products of the items preferences or their
levels of preference. We have analyzed several cases in which judged
gimilarity correlated with items correlations in preferences .64, .45, and in
which it correlated with cross-products .002 and .06.

A number of examples of this kind have caused me to change my point
of view from one which considers location as uniquely determining both
(a) level of and (b) pattern of preference to one which considers that
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location determines the pattern of preference, but that the level of prefer-
ence is determined partly by location and partly by G, a general level of
preference evaluation. Items rather than points in space represent (a)
nodules with a specified level of preference, (b) occupying a particular
position in the space.

Let it suffice in this context to say that we have found metric space
medels useful heuristics in describing regularities in aggregate-aggregate
data and in positioning new items, but we have not yet found an algorithm
for doing the latter that is satisfactory.

For other kinds of data we suspect the metric space assumptions may
prove even more troublesome. In individual data, similarities can shift
radically as various contexts call different features into salience so that
individua) similarity data at one point in time represent a metric space
(Shepard, 1964), while at another point in time they represent a different
metric space. This kind of change seems quite antithetical to the whole
notion of spatial representation. Aggregate free response judged similarity
data aggregate these contexts by aggregating individuals; pattern of be-
havior data or choice data aggregate these data sacross individuals and
contexts.

Due to the perverse and,/or delightful flexibility in sequential behavior
on the part of human beings, several first-rate workers who did early work
on similarity and spatial representation of the mind have shifted to means-
ends process models (Abelson, 1954; Abelson & Carroll, 1965; Abelson,
Aronson, McGuire, Newcomb, Rosenberg & Tannenbaum, 1968; Miller,
Galanter and Pribram, 1960; Miller & Nicely, 1955).

In addition to assuming stability of the structure, the spatial represen-
tation assumes that an element is an element. However, as saliency among
dimensione shifts, i.e, as the spatial configuration appropriate for one
context flows into that for another, an element in the space takes on a
new set of properties (e.g., a bow! becomes a chalice). In working with
aggregate data, the change in similarity as a function of context poses a
problem. Consider the following case: Items A and B are more similar
than items A and C and hence generally elicit more similar patterns of
behavior, yet there may go undetected a single crucial behavior or context
in which A and C may prove more similar (e.g., legal cases).

These properties of the mind—shifting contexts shifting salient features,
and shifting features transforming elements—seem quite unspatial. Even
if we freeze the data at one point in time and look at them in terms of
the metric space assumptions, there are still problems. ApA = 0 suggests
that there is nothing closer to A than A, but consider confusions in recog-
nition experiments in which a single incorrect stimulus may be selected
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more often than the correct stimulus. Such a situation suggests that if
we take confusions as a measure of distance, Apd’ < ApA and Apd # 0.
ApB and BpA symmetry frequently scems to be violated in data on judged
similarity and confusions. An imperfect example of an X may be more
often judged as similar to a prototypic X than vice versa. Confusions
data often indicate similar asymmetries. The triangle inequality
(ApB + BpC = ApC) and its problems were considered above. At this
point let it suffice to say that though A is similar to B {a red apple and
a red Cadillac) and B is similar to C (a red apple and an orange), A and C
{a red Cadiliac and an orange) may be more dissimilar than a strict reading
of Schwartz might suggest.

This is not to suggest that by appropriate manipulations of our data
collection and data analysis we cannot force a metric space, but only to
suggest that while such manipulation may be useful for specific practical
or theoretical purposes their utility is limited and provisional.

The present author’s own notion of the reality of the phenomenon with
which we deal—the individual mind and its aggregated analog, the group
mind or collective representations (Durkheim, 1915)—is that its structure
is discrete, and combinatorial rather than continuous and geometric,
looking more like n dictionary, thesaurus, and a grammar than a three-
space (Steffire, Reich, and McClaran, 1971). Tt is composed of elements
and relations and each element can be represented as a description list of
the elements to which it exhibits specified classes of relations. (This al-
ternative type of development can be seen in the works of Goodman, 1951;
Tyler, 1969; Minsky, 1968; Hartmanis & Stearns, 1966.)

The basic structure is that of 2 multigraph (Berge, 1962; Harary,
Norman, & Cartwright, 1965; Ore, 1963), though the data we deal with are
usually spatial representations of the similarity structure obtained in
aggregate free judged similarity; e.g., frozen stices of individual data with
the elements on the description list at a particular salience aggregated into
a coliective representation.

I am inclined to believe that a multigraph description will allow us
(1) to calculate from it the spatial configuration, and (b) offer us a model
with more flexibility and generality than a spatial approach.

In summary, then, it has been suggested that multidimensional scaling
methods have a real utility in describing patterns of similarity and patterns
in the similarity of behavior elicited by things or events. They are a power-
ful descriptive tool for studying regularities in the patterns of behavior of
aggregates and are of some help, if used heuristically, in determining what
features put new items where in structures of this kind.

Some problems in the use of these methods stem from the shifting nature
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of psychological salience in an individual through time and the fact that
many crucial behaviors one may wish to predict can hinge on the presence
or absence of particular features rather than overall similarity.

A spatial configuration, while not a very good model for the structure
of the individusl or group mind or of the society, does provide a useful
device for working on special problems.
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